精英家教网 > 高中数学 > 题目详情
20.“a=2”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 对a分类讨论,利用两条直线相互垂直的充要条件即可得出.

解答 解:当a=2时,两条直线分别化为:4x=1,y=1,此时两条直线相互垂直;
当a=$\frac{4}{3}$时,两条直线分别化为:10x-2y=3,x=-3,此时两条直线不相互垂直,舍去;
当a≠$\frac{4}{3}$,2时,由两条直线相互垂直,∴-$\frac{a+2}{a-2}$×$\frac{2-a}{3a-4}$=-1,解得a=$\frac{1}{2}$.
综上可得:两条直线相互垂直的充要条件为:a=$\frac{1}{2}$或2.
∴“a=2”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的充分不必要条件.
故选:A.

点评 本题考查了两条直线相互垂直的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若tanα=2,则$\frac{2sinα-cosα}{2cosα+sinα}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.y=xcosxB.y=cosx+$\frac{cos2x}{2}$+$\frac{cos3x}{3}$
C.y=xsinxD.y=sinx+$\frac{sin2x}{2}$+$\frac{sin3x}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的一条渐近线的方程为y=2x,双曲线的一个焦点与抛物线y2=4x的焦点重合,则抛物线的准线与双曲线的两交点为A,B,则|AB|的长为(  )
A.2B.4C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图所示的程序框图,若输出x的值为63,则输入的x值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,则双曲线在一、三象限的渐近线的斜率的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式组$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y+1≥0}\\{y≥0}\end{array}$,表示的平面区域内的点都在圆x2+(y-$\frac{1}{2}$)2=r2(r>0)内,则r的最小值是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{1}{2}$C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知公差不为零的等差数列{an}中,a3=7,且a2,a4,a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,设其前n项和为Sn,求证:$\frac{1}{2}$≤Sn<$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.四棱锥P-ABCD中,底面ABCD为正方形,PA⊥面ABCD,PA=$\frac{1}{2}$AB.
(1)求PC与面PAB所成角的正切值;
(2)设M在PC上,且PD⊥面MAB,求$\frac{PM}{MC}$.

查看答案和解析>>

同步练习册答案