精英家教网 > 高中数学 > 题目详情
8.已知双曲线的一条渐近线的方程为y=2x,双曲线的一个焦点与抛物线y2=4x的焦点重合,则抛物线的准线与双曲线的两交点为A,B,则|AB|的长为(  )
A.2B.4C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

分析 根据双曲线的渐近线方程,利用待定系数法设出双曲线的方程,根据抛物线的焦点关系求出λ即可得到结论.

解答 解:由双曲线的一条渐近线的方程为y=2x,可设双曲线的方程为${x^2}-\frac{y^2}{4}=λ$,
可知抛物线y2=4x的焦点为(1,0),
则双曲线的焦点为(1,0),
即c=1,
则双曲线的方程为$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{4λ}=1$(λ>0).
则a2=λ,b2=4λ,
则满足c2=a2+b2
即λ+4λ=1,
∴$λ=\frac{1}{5}$,双曲线的方程为$5{x^2}-\frac{5}{4}{y^2}=1$,抛物线的准线为x=-1,
当x=-1时,代入$5{x^2}-\frac{5}{4}{y^2}=1$得y=±$\frac{4\sqrt{5}}{5}$,
即A(-1,-$\frac{4\sqrt{5}}{5}$),B(-1,-$\frac{4\sqrt{5}}{5}$),
则|AB|=$\frac{8\sqrt{5}}{5}$,
故选:D

点评 本题主要考查双曲线方程及性质的应用,利用待定系数法求出双曲线的方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{5i}{1+2i}$(i是虚数单位),则复数a的共轭复数$\overline{z}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设抛物线C:y2=16x,斜率为k的直线l与C交于A,B两点,且OA⊥OB,O为坐标原点,则l恒过定点(  )
A.(8,0)B.(4,0)C.(16,0)D.(6,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2015年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2016年1月1日起正式实施.某地计划生育部门为了了解当地家庭对“全面二胎”的赞同程度,从当地200位城市居民中用系统抽样的方法抽取了20位居民进行问卷调查.统计如表:
居民编号28
问卷得分365278701610072781002440787880945577735855
(注:表中居民编号由小到大排列,得分越高赞同度越高)
(Ⅰ)列出该地得分为100分的居民编号;
(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样的方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对“全面二胎”的赞同程度(不要求算出具体数值,给出结论即可);
(Ⅲ)将得分不低于70分的调查对象称为“持赞同态度”.当地计划生育部门想更进一步了解城市居民“持赞同态度”居民的更多信息,将调查所得的频率视为概率,从大量的居民中采用随机抽样的方法每次抽取1人,共抽取了4次.
(i)求每次抽取1人,抽到“持赞同态度”居民的概率;
(ii)若设被抽到的4人“持赞同态度”的人数为ξ.每次抽取结果相互独立,求ξ的分布列、期望E(ξ)及其方差D(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年的
出险次数
012345次以上(含5次)
下一年
保费倍率
85%100%125%150%175%200%
连续两年没有出险打7折,连续三年没有出险打6折
有评估机构从以往购买了车险的车辆中随机抽取1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆每年出险次数的概率):
一年中出险次数012345次以上(含5次)
频数5003801001541
(1)求某车在两年中出险次数不超过2次的概率;
(2)经验表明新车商业车险保费与购车价格有较强的线性相关关系,估计其回归直线方程为:$\widehaty$=120x+1600.(其中x(万元)表示购车价格,y(元)表示商业车险保费).李先生2016 年1月购买一辆价值20万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费,并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上下左右顶点分别为A,B,C,D,且左右的焦点为F1,F2,且以F1F2为直径的圆内切于菱形ABCD,则椭圆的离心率e为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{1+\sqrt{5}}}{2}$D.$\frac{{-1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a=2”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A(x1,y1)是单位圆O上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$,与单位圆O交于点B(x2,y2),若x=my1-2y2(m>0)的最大值为2,则m的值为(  )
A.1B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,则f(f(-2))=14,函数f(x)的零点的个数为1.

查看答案和解析>>

同步练习册答案