精英家教网 > 高中数学 > 题目详情
17.已知A(x1,y1)是单位圆O上任意一点,将射线OA绕点O逆时针旋转$\frac{π}{3}$,与单位圆O交于点B(x2,y2),若x=my1-2y2(m>0)的最大值为2,则m的值为(  )
A.1B.2C.2$\sqrt{2}$D.3

分析 设A(cosα,sinα),则B(cos(α+$\frac{π}{3}$),sin(α+$\frac{π}{3}$)),则my1-2y2=msinα-2sin(α+$\frac{π}{3}$),整理后利用辅助角公式化积,再由x=my1-2y2(m>0)的最大值为2列关于m的等式求得m的值.

解答 解:A(x1,y1)是单位圆上任一点,设A(cosα,sinα),则B(cos(α+$\frac{π}{3}$),sin(α+$\frac{π}{3}$)),
即y1=sinα,y2=sin(α+$\frac{π}{3}$),
则my1-2y2=msinα-2sin(α+$\frac{π}{3}$)
=msinα-2($\frac{1}{2}sinα+\frac{\sqrt{3}}{2}cosα$)
=(m-1)sinα-$\sqrt{3}$cosα
=$\sqrt{(m-1)^{2}+3}$sin(α+β),
∵m>0,my1-2y2的最大值为2,
∴$\sqrt{(m-1)^{2}+3}=2$,解得m=2.
故选:B.

点评 本题考查三角函数的化简求值,注意单位圆、三角函数的性质的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左,右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|的最大值为(  )
A.3B.6C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的一条渐近线的方程为y=2x,双曲线的一个焦点与抛物线y2=4x的焦点重合,则抛物线的准线与双曲线的两交点为A,B,则|AB|的长为(  )
A.2B.4C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,若存在过右焦点F的直线与双曲线C相交于A,B 两点且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,则双曲线在一、三象限的渐近线的斜率的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式组$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y+1≥0}\\{y≥0}\end{array}$,表示的平面区域内的点都在圆x2+(y-$\frac{1}{2}$)2=r2(r>0)内,则r的最小值是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{1}{2}$C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=1,SD=$\sqrt{7}$.
(Ⅰ)求证:CD⊥SD;
(Ⅱ)求SB与面SCD成的线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知公差不为零的等差数列{an}中,a3=7,且a2,a4,a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,设其前n项和为Sn,求证:$\frac{1}{2}$≤Sn<$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正四棱锥的底面边长为2$\sqrt{3}$,侧面积为8$\sqrt{3}$,则它的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:x2=4y,过点P(0,m)(m>0)的动直线l与C相交于A,B两点,抛物线C在点A和点B处的切线相交于点Q,直线AQ,BQ与x轴分别相交于点E,F.
(Ⅰ)写出抛物线C的焦点坐标和准线方程;
(Ⅱ)求证:点Q在直线y=-m上;
(Ⅲ)判断是否存在点P,使得四边形PEQF为矩形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案