分析 (1)证明BC⊥平面PAB,于是∠BPC即为所求角,设PA=1,求出PB,BC即可得出tan∠BPC;
(2)过M作MN∥CD交PD于N,连结AN,则A,B,M,N四点共面,由PD⊥平面MAB得出PD⊥AN,利用相似三角形计算PN,DN,于是$\frac{PM}{MC}=\frac{PN}{DN}$.
解答
解:(1)∵PA⊥平面ABCD,BC?平面ABCD,
∴PA⊥BC,
底面ABCD是正方形,∴BC⊥AB,
又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴BC⊥平面PAB,
∴∠BPC为直线PC与平面PAB所成的角,
设PA=1,则AB=BC=2,∴PB=$\sqrt{5}$,
∴tan∠BPC=$\frac{BC}{PB}$=$\frac{2\sqrt{5}}{5}$.
∴PC与面PAB所成角的正切值为$\frac{2\sqrt{5}}{5}$.
(2)过M作MN∥CD交PD于N,连结AN,则A,B,M,N四点共面.
∵PD⊥面MAB,AN?平面MAB,
∴PD⊥AN.
∴Rt△PAN∽Rt△PDA.∴$\frac{AP}{PD}=\frac{PN}{AP}$.
设PA=1,则AD=AB=2,PD=$\sqrt{5}$.
∴PN=$\frac{A{P}^{2}}{PD}$=$\frac{\sqrt{5}}{5}$,∴DN=$\frac{4\sqrt{5}}{5}$.
∴$\frac{PM}{MC}=\frac{PN}{DN}$=$\frac{1}{4}$.
点评 本题考查了线面垂直的判定与性质,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{18\sqrt{5}}{5}$ | B. | 8 | C. | $\frac{16\sqrt{3}}{3}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3$\sqrt{3}$+12 | C. | 21+$\sqrt{3}$ | D. | $\frac{{3\sqrt{3}}}{2}$+12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 960 | B. | 1240 | C. | 1320 | D. | 1440 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com