精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a,b,c分别是A,B,C的对边,且$\sqrt{2}$sinA=$\sqrt{3cosA}$.
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=2,求△ABC面积的最大值.

分析 (1)将$\sqrt{2}$sinA=$\sqrt{3cosA}$.两边平方,可解得:cosA=$\frac{1}{2}$,又0$<A<\frac{π}{2}$,可求A,利用已知及余弦定理即可得解m的值.
(2)利用余弦定理及基本不等式可得bc=b2+c2-a2≥2bc-a2,(当且仅当b=c时取等号)即bc≤a2,利用三角形面积公式即可得解.

解答 解:(1)将$\sqrt{2}$sinA=$\sqrt{3cosA}$.两边平方,可得:2sin2A=3cosA,
即:(2cosA-1)(cosA+2)=0,解得:cosA=$\frac{1}{2}$,
∵0$<A<\frac{π}{2}$,
∴A=60°.
∵a2-c2=b2-mbc,可以变形可得:$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{m}{2}$,即cosA=$\frac{m}{2}=\frac{1}{2}$,
∴m=1.…6分
(2)∵cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴bc=b2+c2-a2≥2bc-a2,(当且仅当b=c时取等号)即bc≤a2
∴S△ABC=$\frac{bc}{2}$sinA≤$\frac{{a}^{2}}{2}$×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴△ABC的面积的最大值为$\sqrt{3}$.…12分

点评 本题主要考查了余弦定理,基本不等式在解三角形中的应用,考查计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.进入冬季以来,我国北方地区的雾霾天气持续出现,极大的影响了人们的健康和出行,我市环保局对该市2015年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的空气质量指数频率分布直方图,如图.
(1)求a的值;
(2)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从今年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为X.求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有60m长的钢材,要制作如图所示的窗框:
(1)求窗框面积y与窗框宽x的函数关系;
(2)当窗框宽为多少米时,面积y有最大值?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校学生依次进行身体体能和外语两个项目的训练及考核.每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练及考核,若每个学生身体体能考核合格的概率是$\frac{1}{2}$,外语考核合格的概率是$\frac{2}{3}$,若每一次考试是否合格互不影响.
(1)求学生甲体能考核与外语考核都合格的概率.
(2)设学生甲不放弃每一次考核的机会,求学生甲恰好补考一次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知圆O的内接四边形BCED,BC为圆O的直径,BC=2,延长CB,ED交于A点,使得∠DOB=∠ECA,过A作圆O的切线,切点为P,
(1)求证:BD=DE;
(2)若∠ECA=45°,求AP2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某产品的广告费x(万元)与销售额y(万元)的统计数据如表:
 广告费x(万元) 3 4 5 6
 销售额y(万元) 25 30 40 45
根据如表可知回归直线方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$中的b为7,据此模型,若广告费用为10万元,则预计销售额为(  )万元.
A.72.5B.73.5C.74.5D.75.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=x被圆x2+y2-2y-3=0截得的弦长等于$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的方程是$\sqrt{3}x-y+1=0$
(1)求直线l的斜率和倾斜角
(2)求过点$(\sqrt{3},-1)$且与直线l平行的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=||2x-3|-3|+m恰有四个互补相等的零点x1,x2,x3,x4,则x1x2x3x4的取值范围是(-$\frac{243}{16}$,0).

查看答案和解析>>

同步练习册答案