【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为.
(1)求频率分布直方图中的值;
(2)从评分在的师生中,随机抽取2人,求此人中恰好有1人评分在上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.
【答案】(1)0.006(2) (3)76.2,不需要内部整顿.
【解析】试题分析:
(1)由频率分布直方图小长方形面积之和为1可得关于实数a的方程,解方程可得 ;
(2)利用题意列出所有可能的结果,由古典概型公式可得此人中恰好有1人评分在上的概率为
(3)求解平均值 可知食堂不需要内部整顿.
试题解析:
(1)由 ,
得 .
(2)设被抽取的2人中恰好有一人评分在上为事件A.
因为样本中评分在的师生人数为:,记为1,2号
样本中评分在的师生人数为:,记为3,4,5号
所以从5人中任意取2人共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种等可能情况;2人中恰有1人评分在上有(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)共6种等可能情况.
得 .
答:2人中恰好有1人评分在上的概率为.
(3) 服务质量评分的平均分为
因为 , 所以食堂不需要内部整顿.
科目:高中数学 来源: 题型:
【题目】已知函数(),其最小正周期为.
(1)求在区间上的减区间;
(2)将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移个单位,得到函数的图象,若关于的方程在区间上有且只有一个实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为.
(1)求椭圆和抛物线的方程;
(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC边上的高,沿AD将△ABC折成60°的二面角B-AD-C,如图2.
(1)证明:平面ABD⊥平面BCD;
(2)设E为BC的中点,BD=2,求异面直线AE与BD所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 | 相关人数 | 抽取人数 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:
(I)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(II)如果语文和数学两科都特别优秀的共有6人,从(I)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.
(附参考公式)若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=1+2x.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图像;
(3)写出函数f(x)的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,假命题是_________ (填序号).
①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;
②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③与两条坐标轴都相交的直线不一定可以用方程表示;
④经过点Q(0,b)的直线都可以表示为y=kx+b.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com