精英家教网 > 高中数学 > 题目详情
17.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案的种数是(  )
A.64B.20C.18D.10

分析 把6个相同的名额分配到3个班中,每班至少一个,可以用挡板法来解,把6个元素一字排列形成5个空,再在5个位置放置2个挡板.把元素分成3部分,放到3个班中.

解答 解:把6个相同的代表的名额分配到3个班中,每班至少一个,
可以用挡板法来解,把6个元素一字排列形成5个空
再在5个位置放置2个挡板共有C52=10种结果,
故选:D.

点评 本题用挡板法来解,是一个典型的排列组合问题,排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},满足a1=2,a3=6
(1)求该数列的公差d和通项公式an
(2)若数列{bn}的前n项的和为${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆的一条直径的两个端点是(2,0),(2,-2),则此圆的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x+2)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cosα=$\frac{3}{5},cos(α-β)=\frac{12}{13}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;       
(2)求cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},|x|≥1}\\{x,|x|<1}\end{array}\right.$,若f(g(x))的值域是[0,+∞),则函数y=g(x)的值域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求(1+2x+x210(1-x)5展开式中各项系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出S的值是11,则输入n的值是(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,菱形ABCD中,AB=1,∠ABC=$\frac{2}{3}$π,E为线段AD的动点,设∠ECD=α.
(1)若EA=ED,求sinα;
(2)分别过D、B作EC的垂线,垂足分别为M、N,求2DM+BN的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=(-$\sqrt{3}$sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求f(x)的最小正周期;
(2)求函数f(x)在[0,$\frac{π}{2}$]上最大值与最小值.

查看答案和解析>>

同步练习册答案