精英家教网 > 高中数学 > 题目详情

若函数f(x)=x3-3x+a有三个不同的零点,求实数a的取值范围.

(本小题满分12分)
解:由函数f(x)=x3-3x+a有三个不同的零点,
则函数f(x)有两个极值点,极小值小于0,极大值大于0;
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函数f(x)的两个极,x∈(-∞,-1),f′(x)>0,x∈(-1,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函数的极小值f(1)=a-2和极大值f(-1)=a+2.
因为函数f(x)=x3-3x+a有三个不同的零点,
所以,解之,得-2<a<2.
故实数a的取值范围是(-2,2).
分析:已知条件转化为函数有两个极值点,并且极小值小于0,极大值大于0,求解即可.
点评:本题是中档题,考查函数的导数与函数的极值的关系,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案