精英家教网 > 高中数学 > 题目详情
已知函数的导函数,且的值为整数,当时,所有可能取的整数值有且只有1个,则   
4
,由题意得
,所以n
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数在两个极值点,且
(Ⅰ)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;

(II)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的导数
(1)y=(x2-2x+3)e2x;
(2)y=.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,其中
(1)当满足什么条件时,取得极值?
(2)已知,且在区间上单调递增,试用表示出的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x>4时,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数与函数f(x)、g(x)的图象共有3个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是定义在上的奇函数,当时,(a为实数).
  (1)当时,求的解析式;
  (2)若,试判断在[0,1]上的单调性,并证明你的结论;
  (3)是否存在a,使得当时,有最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
⑴当时,求函数图象上的点到直线距离的最小值;
⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知函数 且导数.
(Ⅰ)试用含有的式子表示,并求单调区间; (II)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称存在“伴侣切线”.特别地,当时,又称存在“中值伴侣切线”.试问:在函数上是否存在两点使得它存在“中值伴侣切线”,若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案