精英家教网 > 高中数学 > 题目详情
设函数.
⑴当时,求函数图象上的点到直线距离的最小值;
⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
(1)  ;
(2)存在正数的取值范围为    
⑴由 得 ,令 得
∴所求距离的最小值即为到直线的距离
                  
⑵假设存在正数,令 
得:  
∵当时, ,∴为减函数;
时,,∴为增函数.
    
  ∴ 
的取值范围为     
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线. 若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意xR都有. 则称直线l为曲线S的“上夹线”.
(1) 类比“上夹线”的定义,给出“下夹线”的定义;
(2) 已知函数取得极小值,求ab的值;
(3) 证明:直线是(2)中曲线的“上夹线”。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知a∈R,函数f (x) =x3 + ax2 + 2ax (x∈R).     (Ⅰ)当a = 1时,求函数f (x)的单调递增区间;      (Ⅱ)函数f (x) 能否在R上单调递减,若是,求出a的取值范围;若不能,请说明理由;  (Ⅲ)若函数f (x)在[-1,1]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数)的图象关于原点对称,分别为函数的极大值点和极小值点,且|AB|=2,.
(Ⅰ)求的值;
(Ⅱ)求函数的解析式;
(Ⅲ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设,当m≥时,求g(x)在[]上的最大值;
(2)若上是单调减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)设实数a为正数,函数.(Ⅰ)当时,求曲线处的切线方程; (Ⅱ)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设函数(1)当时,求的最大值;(2)令,(0≤3),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知定义在正实数集上的函数,其中. 设两曲线有公共点,且在该点处的切线相同.(I)用表示;(II)求证:).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的导函数,且的值为整数,当时,所有可能取的整数值有且只有1个,则   

查看答案和解析>>

同步练习册答案