精英家教网 > 高中数学 > 题目详情
求函数的最大值.

试题分析:因为     6分
…8分,
当且仅当时取 “”号,即当时,    10分
点评:解决的关键是利用函数的单调性来求解得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数有两个极值点,且.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的递减区间是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数)满足,且的导函数<,则<的解集为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明函数f(x)=x+在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最大值是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分)已知函数x∈R).
(1)若,求的值;
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设函数,其中,且a≠0.
(Ⅰ)当a=2时,求函数在区间[1,e]上的最小值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

同步练习册答案