精英家教网 > 高中数学 > 题目详情
证明函数f(x)=x+在(0,1)上是减函数.
根据函数单调性的定义法,设出任意两个变量,得到对应的函数值的差,定号,下结论。

试题分析:证明:(1)设0<x1<x2<1,则x2-x1>0,
f(x2)-f(x1)=(x2)-(x1)
=(x2-x1)+()=(x2-x1)+
=(x2-x1)(1-)=
若0<x1<x2<1,则x1x2-1<0,
故f(x2)-f(x1)<0,∴f(x2)<f(x1).
∴f(x)=x+在(0,1)上是减函数.
点评:证明函数的单调性一般运用定义法来加以证明,作差变形,定号,下结论。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足对一切都有,且,当时有.
(1)求的值;
(2)判断并证明函数上的单调性;
(3)解不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的图象如图所示,且与轴相切于原点,若函数的极小值为-4.

(1)求的值;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线的所有切线中,斜率最小的切线方程是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上是减函数,那么(   )
A.有最小值9B.有最大值9C.有最小值-9D.有最大值-9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知命题P:函数R上的减函数,命题Q:在 时,不等式恒成立,若命题“”是真命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案