精英家教网 > 高中数学 > 题目详情
是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。
(1)
①当时,单增区间为:;单减区间为:
②当时,单增区间为:;单减区间为:
(2)的取值范围为

试题分析:(1)∵ ∴
      2分
由题意得:,即    3分


是函数的一个极值点
,即
的关系式  5分
①当时,,由得单增区间为:
得单减区间为:
②当时,,由得单增区间为:
得单减区间为:;    8分
(2)由(1)知:当时,上单调递增,在上单调递减,
上的值域为   10分
易知上是增函数
上的值域为  12分
由于
又∵要存在,使得成立,
∴必须且只须解得: 
所以:的取值范围为    14分
点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。证明不等式问题,往往通过构造新函数,研究其单调性及最值,而达到目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数f(x)在定义域R内可导,若f(x)=f(4-x),且当x∈(-∞,2)时,(x-2)·f′(x)<0,设af(4),bf(1), cf(-1),则a,b,c由小到大排列为  (    )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(1)若,写出函数的单调递增区间(不必证明);
(2)若,当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数=,若互不相等的实数满足,则 的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数有两个极值点,且.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若对任意的实数a,函数的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数上是单调递增函数,则的取值范围是_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明函数f(x)=x+在(0,1)上是减函数.

查看答案和解析>>

同步练习册答案