精英家教网 > 高中数学 > 题目详情
已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数
(1)极大值,极小值.(2)当时,上单调递减,单调递增, 单调递减;当时,单调递减;当时,上单调递减,单调递增,单调递减;(3)构造函数,利用函数的单调性处理

试题分析: 1分
(1)令,知在区间上单调递增,上单调递减,在单调递增.故有极大值,极小值.………4分
(2)当时,上单调递减,单调递增,单调递减,当时,单调递减
时,上单调递减,单调递增,单调递减 7分
(3)由(Ⅰ)当时,上单调递减.

,即



.  10分
点评:近几年新课标高考对于函数与导数这一综合问题的命制,一般以有理函数与半超越(指数、对数)函数的组合复合且含有参量的函数为背景载体,解题时要注意对数式对函数定义域的隐蔽,这类问题重点考查函数单调性、导数运算、不等式方程的求解等基本知识,注重数学思想(分类与整合、数与形的结合)方法(分析法、综合法、反证法)的运用.把数学运算的“力量”与数学思维的“技巧”完美结合
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

,这三个函数中,当时,
使恒成立的函数的个数是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调增区间为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则=(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)写出该函数的单调区间;
(2)若函数恰有3个不同零点,求实数的取值范围;
(3)若对所有恒成立,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足对一切都有,且,当时有.
(1)求的值;
(2)判断并证明函数上的单调性;
(3)解不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

同步练习册答案