精英家教网 > 高中数学 > 题目详情
设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.
(I)(1)当上单调递增 ;
(2)当的两根都小于,在上,
上单调递增;
(3)分别在上单调递增,在上单调递减.
(II)不存在,使得 

试题分析:(I)的定义域为        1分
,其判别式                   2分
(1)当上单调递增        3分
(2)当的两根都小于,在上,
上单调递增                       4分
(3)当的两根为
时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减.     6分
(II)由(I)知,.因为
所以               7分
又由(I)知,.于是               8分
若存在,使得.即.     9分
亦即                     0分
再由(I)知,函数上单调递增,         11分
,所以这与式矛盾.
故不存在,使得                       12分
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间,得到直线斜率表达式。存在性问题,往往要假设存在,利用已知条件探求。本题涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ) 求函数在点处的切线方程;
(Ⅱ) 若函数在区间上均为增函数,求的取值范围;
(Ⅲ) 若方程有唯一解,试求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=.
(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若恒成立,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(1)若,写出函数的单调递增区间(不必证明);
(2)若,当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数=,若互不相等的实数满足,则 的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数有两个极值点,且.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数)满足,且的导函数<,则<的解集为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案