精英家教网 > 高中数学 > 题目详情
已知直线l:y=2x-2与抛物线M:y=x2的切线m平行
(I)求切线m的方程和切点A的坐标
(II)若点P是直线l上的一个动点,过点P作抛物线M的两条切线,切点分别为B,C,同时分别与切线m交于点E,F试问
S△ABC
|EF|
是否为定值?若是,则求之,若不是,则说明理由.
(I)设切点A(x0x02),切线斜率k=2x0
∴2x0=2,x0=1
∴A(1,1),切线m的方程为y=2x-1;
(II)设P(s,t),切点B(x1x12),C(x2x22)
∵y=2x,
∴切线PB,PC的方程分别是y=2x1x-x12,y=2x2x-x22
联立方程组
y=2x1x-x12
y=2x2x-x22
,得交点P(
x1+x2
2
x1x2
),即
s=
x1+x2
2
t=x1x2

∵点P在直线l:y=2x-2上,即t=2s-2,2s-t=2
又∵直线BC的方程为y=(x1+x2)x-x1x2=2sx-t
∴点A(1,1)到直线BC的距离d=
|2s-1-t|
1+4s2
=
1
1+4s2

又由
y=2sx-t
y=x2
得x2-2sx+t=0.
|BC|=
1+4s2
|x1-x2|

S△ABC=
1
2
|BC|d=
1
2
|x1-x2|
   
联立方程组
y=2x1x-x12
y=2x-1
,得交点E(
x1+1
2
x1)

联立方程组
y=2x2x-x22
y=2x-1
,得交点F(
x2+1
2
x2)

|EF|=
(
x1+1
2
-
x2+1
2
)2+(x1-x2)2
=
5
2
|x1-x2|

S△ABC
|EF|
=
1
2
|x1-x2|
5
2
|x1-x2|
=
5
5
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=2x-2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所截的线段长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x+1和圆C:x2+y2=4,
(1)试判断直线和圆的位置关系.
(2)求过点P(-1,2)且与圆C相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x+m和椭圆C:
x2
4
+y2=1

(1)m为何值时,l和C相交、相切、相离;
(2)m为何值时,l被C所截线段长为
20
17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2+lnx
(1)求f(x)在区间[1,e]上的最大值与最小值;
(2)已知直线l:y=2x+a与函数f(x)的图象相切,求切点的坐标及a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=2x-
3
与椭圆C:
x2
a2
+y2=1  (a>1)
交于P,Q两点.
(1)设PQ中点M(x0,y0),求证:x0 <
3
2

(2)椭圆C的右顶点为A,且A在以PQ为直径的圆上,求△OPQ的面积(O为坐标原点).

查看答案和解析>>

同步练习册答案