精英家教网 > 高中数学 > 题目详情
已知公差不为0的等差数列{an}的首项a1(a1∈R),且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
1
a2
+
1
a22
+
1
a23
+…+
1
a2n
1
a1
的大小.
(Ⅰ)设等差数列{an}的公差为d,由题意可知(
1
a2
)
2
=
1
a1
×
1
a4

即(a1+d)2=a1(a1+3d),从而a1d=d2
因为d≠0,所以d=a1
故an=nd=na1
(Ⅱ)记Tn=
1
a2
+
1
a22
+…+
1
a2n
,由a2=2a1
所以Tn=
1
a2
(1-
1
a2n
)
1-
1
a2
=
1
2a1
(1-
1
(2a1)n
)
1-
1
2a1
=
1-
1
(2a1)n
2a1-1

从而,当a1>1时,Tn
1
a1
;当a1<1时,Tn
1
a1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
S3-S2
S5-S3
的值为(  )
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,若a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,则S9=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,S3=a4+6,且a1,a4,a13成等比数列,则a10=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式和前n项和Sn
(2)设Tn为数列{
1anan+1
}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

同步练习册答案