精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和Sn=n2-1,其中n=1,2,3,…,那么a5=9;通项公式an=$\left\{\begin{array}{l}{0,n=1}\\{2n-1,n≥2}\end{array}\right.$.

分析 由Sn=n2-1,可得当n=1时,a1=S1=0;当n≥2时,an=Sn-Sn-1,即可得出.

解答 解:∵Sn=n2-1,∴当n=1时,a1=S1=0;当n≥2时,an=Sn-Sn-1=(n2-1)-[(n-1)2-1]=2n-1.
∴a5=2×5-1=9.
an=$\left\{\begin{array}{l}{0,n=1}\\{2n-1,n≥2}\end{array}\right.$,
故答案分别为:9;$\left\{\begin{array}{l}{0,n=1}\\{2n-1,n≥2}\end{array}\right.$.

点评 本题考查了递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线l1:3x+4y-12=0,l2:7x+y-28=0,则直线l1与l2的夹角是(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数.若牛奶放在0℃的冰箱中,保鲜时间约是200h,而在1℃的温度下则是160h.
(1)写出保鲜时间y关于储藏温度x的函数解析式;
(2)利用(1)的结论,指出温度在2℃和3℃的保鲜时间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn,公差为d,若a23+a2-1=0,a20143+a2014+1=0,则下列四个结论正确的为①②.(把所有正确结论的序号都填上)
①S2015=0;②a1008=0;③d>0;④S1006=S1007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=2x
(1)求f(x)的解析式;
(2)解不等式:f(a2-1)+f(1-a)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解不等式:|3x-2|-|x+1|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于二项式(x-1)1999有下列四个命题,
①该二项展开中非常数项的系数和为1
②该二项展开式中系数最大的项是第1000项
③该二项展开式中第6项为C$\stackrel{6}{1999}$X1993
④当x=2000时,(x-1)1999除以2000的余数是1999,
其中正确的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=ax2在点(1,a)处的切线与直线x+y+5=0 平行,则a的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合M={x|x2+x-2≤0},N={-2,-1,1,2},则M∩N等于(  )
A.{-1,1,2}B.{1}C.{-1,1}D.{-2,-1,1}

查看答案和解析>>

同步练习册答案