精英家教网 > 高中数学 > 题目详情
4.已知P是△ABC外一点,PA,PB,PC两两互相垂直,PA=1cm,PB=2cm,PC=3cm,则△ABC的面积为(  )
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

分析 由已知利用勾股定理可求AB,AC,BC的值,利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值,利用三角形面积公式即可得解.

解答 解:∵P是△ABC外一点,PA,PB,PC两两互相垂直,PA=1cm,PB=2cm,PC=3cm,
∴AB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,AC=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,BC=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
∴cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{5+10-13}{2×\sqrt{5}×\sqrt{10}}$=$\frac{\sqrt{2}}{10}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{7\sqrt{2}}{10}$,
∴S△ABC=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×\sqrt{5}×\sqrt{10}×\frac{7\sqrt{2}}{10}$=$\frac{7}{2}$.
故选:A.

点评 本题主要考查了勾股定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,若a5=6,a3=2,则公差为(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线y2=12x上与焦点的距离等于6的点的坐标是(3,6)或(3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记F(x,y)=x+y-a(2$\sqrt{3xy}$+x),存在x0∈R+使F(x0,3)=3,则实数a满足(  )
A.0<a<1B.0≤a<1C.0<a≤1D.0<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,首项a1=-20,公差d=3,则|a1|+|a2|+|a3|+…+|a11|=(  )
A.99B.100C.-55D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l与函数f(x)=ln($\sqrt{e}$x)-ln(1-x)的图象交于P,Q两点,若点R($\frac{1}{2}$,m)是线段PQ的中点,则实数m的值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知约束条件$\left\{\begin{array}{l}x≥k\\ x+y-4≤0\\ x-y≤0\end{array}\right.$表示面积为1的直角三角形区域,则实数k的值为(  )
A.0B.1C.1或3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A={x|2x-1<3},B={x|x2+x-6≤0},则A∩B=(  )
A.[-3,-1)B.[-3,2)C.(-∞,-3]∪(2,+∞)D.(-∞,-3]∪(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=1-$\frac{2}{{{2^x}+1}}$.
(1)求证:f(x)是定义域内的增函数;
(2)当x∈[0,1]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案