精英家教网 > 高中数学 > 题目详情
10.在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(Ⅰ)求证:DE∥平面ACF;
(Ⅱ)求证:BD⊥AE;
(Ⅲ)若AB=$\sqrt{2}$CE=2,求三棱锥F-ABC的体积.

分析 (Ⅰ)利用线面平行的判定定理证明DE∥平面ACF;
(Ⅱ)利用线面垂直的判定定理先证明BD⊥平面ACE,然后利用线面垂直的性质证明BD⊥AE;
(Ⅲ)取BC中G,连结FG,推导出FG⊥底面ABCD,由此能求出三棱锥F-ABC的体积.

解答 证明:(Ⅰ)连接OF.由ABCD是正方形可知,点O为BD中点.
又F为BE的中点,∴OF∥DE.
又OF?面ACF,DE?面ACF,
∴DE∥平面ACF….(4分)
(II)由EC⊥底面ABCD,BD?底面ABCD,
∴EC⊥BD,
由ABCD是正方形可知,AC⊥BD,
又AC∩EC=C,AC、E?平面ACE,
∴BD⊥平面ACE,
又AE?平面ACE,
∴BD⊥AE…(9分)
解:(III)取BC中G,连结FG,
在四棱锥E-ABCD中,EC⊥底面ABCD,
∵FG是△BCE的中位线,∴FG⊥底面ABCD,
∵AB=$\sqrt{2}CE=2$,∴FG=$\frac{1}{2}EC=\frac{\sqrt{2}}{2}$,
∴三棱锥F-ABC的体积V=$\frac{1}{3}×{S}_{△ABC}×FG$=$\frac{1}{3}$×$\frac{1}{2}$×4×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$.

点评 本题主要考查了空间直线和平面垂直的判定定理和性质定理的应用,要求熟练掌握相应的定理,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1>0}\\{x<2}\\{x+y-1>0}\end{array}\right.$,若z=2x-2y-1,则z的取值范围为(  )
A.(-$\frac{5}{3}$,5)B.(-$\frac{5}{3}$,0)C.[0,5]D.[-$\frac{5}{3}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别F1,F2,点$P({-1,\frac{3}{2}})$是椭圆C的一点,满足$\overrightarrow{PF{\;}_1}•\overrightarrow{P{F_2}}=\frac{9}{4}$.
(I)求椭圆C的方程.
(II)已知O为坐标原点,设A、B是椭圆E上两个动点,$\overrightarrow{PA}+\overrightarrow{PB}=λ\overrightarrow{PO}({0<λ<4,λ≠2})$.求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设抛物线C:y2=2px(p>0)的焦点F,其准线与x轴相交于点Q,过点F倾斜角为锐角θ的直线交抛物线于A,B两点,若∠QBF=90°,则cosθ=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线x2=2py(p>0)上一点M(4,y0)到焦点F的距离|MF|=$\frac{5}{4}$y0,则焦点F的坐标为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱锥P-ABC的底面ABC的边长为a,高为h,在正三棱锥内任取一点M,使得VP-ABC>2VM-ABC的概率是(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式x2-1≥0的解集为(  )
A.{x|-1≤x≤1}B.{x|-1<x<1}C.{x|x≥1或x≤-1}D.{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=2px(p>0)上一点M(1,y)到焦点F的距离为$\frac{17}{16}$.
(1)求p的值;
(2)若圆(x-a)2+y2=1与抛物线C有公共点,结合图形求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$,则f(f(2π))=1.

查看答案和解析>>

同步练习册答案