精英家教网 > 高中数学 > 题目详情
3.设正数x,y满足:x>y,x+2y=3,则$\frac{1}{x-y}$+$\frac{9}{x+5y}$的最小值为(  )
A.$\frac{8}{3}$B.$\frac{11}{4}$C.4D.2

分析 由条件可得2x+4y=6,即有原式=$\frac{1}{6}$[(x-y)+(x+5y)]($\frac{1}{x-y}$+$\frac{9}{x+5y}$),展开后运用基本不等式,即可得到所求最小值.

解答 解:正数x,y满足:x>y,x+2y=3,
即有2x+4y=6,
则$\frac{1}{x-y}$+$\frac{9}{x+5y}$=$\frac{1}{6}$[(x-y)+(x+5y)]($\frac{1}{x-y}$+$\frac{9}{x+5y}$)
=$\frac{1}{6}$(10+$\frac{x+5y}{x-y}$+$\frac{9(x-y)}{x+5y}$)≥$\frac{1}{6}$(10+2$\sqrt{\frac{x+5y}{x-y}•\frac{9(x-y)}{x+5y}}$)
=$\frac{1}{6}$×16=$\frac{8}{3}$.
当且仅当3(x-y)=x+5y,即有x=2,y=$\frac{1}{2}$,取得最小值$\frac{8}{3}$.
故选:A.

点评 本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为[0,4],求函数y=f(x+3)+f(x2)的定义域为(  )
A.[-2,-1]B.[1,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(-1,0).
(1)求证:直线l恒过定点,并求出定点坐标;
(2)求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题:
①没有公共点的两条直线是异面直线;  
②分别和两条异面直线都相交的两直线异面;
③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行;
④三条平行线最多可确定三个平面.
其中正确答案的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.7名同学排成一排,其中甲、乙两人必须排在一起的不同排法有1440种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx,g(x)=$\sqrt{3}$tanx,x∈(0,$\frac{3π}{2}$).
(1)求函数y=f(x)与y=g(x)的图象的交点;
(2)在同一坐标系中,画出f(x),g(x)的草图,根据图象
①写出满足f(x)>g(x)的实数x的取值范围;
②写出这两个函数具有相同的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点M(-2,4)作圆C:(x-2)2+(y-1)2=25的切线l,又直线l1:ax+3y+2a=0与直线l平行,则直线l与l1之间的距离为2.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若两个正实数x,y满足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,则实数m的取值范围是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司采用众筹的方式募集资金,开发一种创新科技产品,为了解募集的资金x(单位:万元)与收益率y之间的关系,对近6个季度众筹到的资金xi和收益率yi的数据进行统计,得到数据表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通过绘制并观察散点图的分布特征后,分别选用y=a+bx与y=c+dlgx作为众筹到的资金x与收益率y的拟合方式,再经过计算,得到这两种拟合方式的回归方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的统计数值,试运用相关指数比较以上两回归方程的拟合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根据以上拟合效果较好的回归方程,解答:
(i)预测众筹资金为5万元时的收益率.(精确到0.0001)
(ii)若众筹资金服从正态分布N(μ,σ2),试求收益率在75.75%以上的概率.
附:(1)相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若随机变量X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)参考数据:lg2=0.3010,lg3=0.4771.

查看答案和解析>>

同步练习册答案