精英家教网 > 高中数学 > 题目详情

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

(1);(2)

解析试题分析:(1)由,从而求,再代入,代入等比数列通项公式求;(2)求数列前n项和,首先考察数列通项公式,根据通项公式的不同形式选择相应的求和方法,由=,故求得,利用裂项相消法求和.
试题解析:(1)设数列{an}的公比为q.由,所以.由条件可知
,所以.故数列{an}的通项公式为.
(2) .
.

所以数列的前n项和为.
考点:1、等比数列的通项公式;2、等比数列的性质;3、数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn满足Snan n-1=2(n∈N*),设cn=2nan.
(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.
(2)按以下规律构造数列{bn},具体方法如下:
b1c1b2c2c3b3c4c5c6c7,…,第nbn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列是递增的等差数列,且
(1)求数列的通项公式;
(2)求数列的前项和的最小值;
(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(a-1)x-b-1,当x∈[b, a]时,函数f(x)的图像关于y轴对称,数列的前n项和为Sn,且Sn=f(n).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,Tn=b1+b2++bn,若Tn>2m,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知等比数列满足.
(1)求数列的前15项的和
(2)若等差数列满足,求数列的前项的和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,且对任意的正整数均成等比数列.
(1)求的值;
(2)证明:均成等比数列;
(3)是否存在唯一正整数,使得恒成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为正数;②对于任意的正整数,当为偶数时,;当为奇数时,
(1)若,求数列的通项公式;
(2)若成等差数列,求的值;
(3)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列的首项为,公比为为正整数),且满足的等差中项;数列满足).
(Ⅰ)求数列的通项公式;
(Ⅱ)试确定的值,使得数列为等差数列;
(Ⅲ)当为等差数列时,对每个正整数,在之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的所有正整数.

查看答案和解析>>

同步练习册答案