精英家教网 > 高中数学 > 题目详情
6.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的两个焦点为F1,F2,过F1的直线交椭圆于A、B两点,若|AB|=6,则|AF1|+|BF1|的值为(  )
A.10B.8C.16D.12

分析 由椭圆的定义可得:|AF1|+|AF2|=|BF1|+|BF2|=2a,即可得出.

解答 解:由椭圆的定义可得:|AF1|+|AF2|=|BF1|+|BF2|=2a=8,
∴|AF2|+|BF2|=16-|AB|=16-6=10,
故选:A.

点评 本题考查了椭圆的定义及其标准方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知一椭圆的对称轴为坐标轴且与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦点,并且经过点(3,-2),则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{15}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在正四棱柱ABCD-A1B1C1D1中,AB=AD=2,AA1=4,则正四棱柱的外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将6本不同的书,分给甲、乙、丙三人,每人至少1本,则不同的分配方法种数为540.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请求出这个路线的最短路程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={-1,0,1},N={x|x2≤0},则M∩N=(  )
A.{0}B.{0,1}C.{-1,1}D.{-1,0 }

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知${∫}_{0}^{1}$(x2-mx)dx=$\frac{1}{3}$,则实数m的值为(  )
A.$\frac{1}{3}$B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合 A={y|y<a,或y>a2+1},B={y|y=2x-1,2≤x≤3},若A∩B=∅,则实数a的取值范围是(  )
A.(-∞,2)B.$[{\sqrt{3},2}]$C.$(-∞,-2)∪[{\sqrt{3},2}]$D.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,AD⊥AB,DC∥AB,$AD=AE=DC=\frac{1}{2}AB=4$,△MDC是等边三角形,且平面MDC⊥平面ABCD.
(Ⅰ)证明:EC∥平面MAD;
(Ⅱ)求三棱锥B-AMC的体积.

查看答案和解析>>

同步练习册答案