精英家教网 > 高中数学 > 题目详情

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是 ( )

A. B.

C. D.

【答案】D

【解析】试题分析:四个三视图均表示一个高为3,底面为两直角边分别为12的棱锥,AC中俯视图正好旋转,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故AC表示同一棱锥,设A中观察的正方向为标准正方向,以C表示从后面观察该棱锥,BD中俯视图正好旋转,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故BD中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥,故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一鲜花店一个月(30天)某种鲜花的日销售量与销售天数统计如下:

日销售量(枝)

0~49

50~99

100~149

150~199

200~250

销售天数(天)

3天

3天

15天

6天

3天

将日销售量落入各组区间的频率视为概率.

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).

1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?

2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为的数学期望和方差.

参考公式: 其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销AB两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销AB商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投资额为零时收益为零.

(1)ab的值;

(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的导函数的图象,给出下列命题:①-2是函数的极值点;②1是函数的极值点;③处切线的斜率小于零;④在区间上单调递增.则正确命题的序号是_______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知O为坐标原点,向量,点P满足

)记函数·,求函数的最小正周期;

)若OPC三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案