精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x,g(x)=x2-2x(x∈(2,4)),求f(x),g(x)的单调区间.
考点:函数单调性的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:将函数进行配方,利用二次函数的性质即可得到函数的单调区间.
解答: 解:f(x)=x2-2x=(x-1)2-1,对称轴为x=1,抛物线开口向上,
则单调递增区间为[1,+∞),单调递减区间为(-∞,1],
g(x)=x2-2x=(x-1)2-1,对称轴为x=1,抛物线开口向上,
∵x∈(2,4)),
∴函数g(x)在(2,4)上单调递增,
则单调递增区间为(2,4).
点评:本题主要考查函数单调区间的求解,利用二次函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题“若p,则q”是真命题,对下列命题中一定是真命题的是(  )
A、若q,则p
B、¬p,则¬q
C、若¬q,则¬p
D、若¬p,则q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=-an-(
1
2
n+1+2(n为正整数).
(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=
n+1
n
an,Tn=c1+c2+…+cn,求Tn并证明:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

某装修公司根据客户要求装饰一个墙角,施工设计时,在墙面交线AB与天花板ACD之间拉一条“定位线”EF(如图),已知墙面交线AB、AC、AD两两垂直,且AB=2,AC=AD=3.(单位:分米)
(Ⅰ)若点E、F分别为AB、CD的中点,请指出此时直线EF与直线BC的位置关系(直接写出结论);
(Ⅱ)若E、F分别在AB、天花板ACD上运动时,始终保持“定位线”EF的长为定值2,记EF的中点为G,试探究线段AG的长是否也为定值,若是,求出该定值;若不是,说明理由;
(Ⅲ)在(Ⅱ)的条件下,客户提出在点G处安装一盏装饰灯,为了美观和更好地散热,需将灯安装在与天花板ACD的距离为
3
3
且与另两墙距离之和最大处,求此时直线AG平与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
①f(x)=
1-x
2x2-3x-2

②f(x)=
1-x
+
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A′EF位置,使得A′C=2
6

(1)求五棱锥A′-BCDFE的体积;
(2)在线段A′C上是否存在一点M,使得BM∥平面A′EF?若存在,求A′M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1(-1,0),F2(1,0),点P是椭圆C上的一点,PF1与y轴的交点Q恰为PF1的中点,|OQ|=
3
4

(Ⅰ)求椭圆C的方程;
(Ⅱ)若点A为椭圆的右顶点,过焦点F1的直线与椭圆C交于不同的两点M、N,求△AMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+y-3=0与直线l2:x-3y+1=0相交于点C,以C为圆心的圆过点A(0,1).
(1)求圆C的方程;
(2)求过点B(4,5)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上顶点到焦点的距离为2,离心率为
3
2

(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

同步练习册答案