【题目】某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金,如果每间客房日租金每增加4元,客房出租就会减少10间.(不考虑其他因素)
(1)设每间客房日租金提高
元(
),记该中心客房的日租金总收入为
,试用
表示![]()
(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,离心率为
.不过原点的直线
与椭圆
相交于
两点,设直线
,直线
,直线
的斜率分别为
,且
成等比数列.
(1)求
的值;
(2)若点
在椭圆
上,满足
的直线
是否存在?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假.
(1)过一条直线的平面有无数多个;
(2)如果两个平面有两个公共点
,那么它们就有无数多个公共点,并且这些公共点都在直线
上;
(3)两个平面的公共点组成的集合,可能是一条线段;
(4)两个相交平面可能存在不在一条直线上的3个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①过圆心和圆上的两点有且只有一个平面
②若直线
与平面
平行,则
与平面
内的任意一条直线都没有公共点
③若直线
上有无数个点不在平面
内,则![]()
④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行
⑤垂直于同一个平面的两条直线平行
其中正确的命题的个数是
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问
名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | |
读营养说明 |
|
|
|
不读营养说明 |
|
|
|
总计 |
|
|
|
附:
|
|
|
|
|
|
|
|
![]()
(1)由以上列联表判断,能否在犯错误的概率不超过
的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的
名不读营养说明的大学生中随机选取
名学生,求抽到女生人数
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设
分别为椭圆
的左、右焦点,不经过
的直线
与椭圆
交于两个不同的点
,如果直线
、
、
的斜率依次成等差数列,求焦点
到直线
的距离
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:
![]()
(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?
(Ⅱ)如果语文和数学两科都特别优秀的共有3人.
(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.
(ⅱ)根据以上数据,完成
列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
语文特别优秀 | 语文不特别优秀 | 合计 | |
数学特别优秀 | |||
数学不特别优秀 | |||
合计 |
![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的
人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
|
(1)用分层抽样的方法在患心肺疾病的人群中抽
人,其中男性抽多少人?
(2)在上述抽取的
人中选
人,求恰好有
名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量
,你有多大把握认为心肺疾病与性别有关?
下面的临界值表供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com