精英家教网 > 高中数学 > 题目详情
13.复数z满足z(2-i)=3+i,则$\overline z$=(  )
A.1-iB.1+iC.-1-iD.-1+i

分析 由z(2-i)=3+i,得$z=\frac{3+i}{2-i}$,然后利用复数代数形式的乘除运算化简,则$\overline z$可求.

解答 解:由z(2-i)=3+i,
得$z=\frac{3+i}{2-i}$=$\frac{(3+i)(2+i)}{(2-i)(2+i)}=\frac{5+5i}{5}=1+i$.
则$\overline z$=1-i.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的首项a1=1,且满足an+1-an≤2n,an-an+2≤-3×2n,则a2016=22016-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是边长为$\sqrt{3}$的正三角形,AC与BD交于点O,点M是PB的中点.
(1)求证:OM∥平面PAD;
(2)求三棱锥M-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,AB是半圆O的直径,C是半圆O上除了A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=BE,AB=4,tan∠EAB=$\frac{1}{4}$
(1)证明:平面ADE⊥平面ACD
(2)当AC=BC时,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“c<0”是“方程x2+bx+c=0有根”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个四棱锥的三视图如图所示,则该四棱锥的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆的方程是x2+y2-6x-4y+8=0,则过圆上一点P(2,0)的切线方程是x+2y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.M为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,A、F分别为双曲线的左顶点和右焦点,且△MAF为等边三角形,则双曲线C的离心率为(  )
A.$\sqrt{5}$-1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(b-a)sinA=(b-c)(sinB+sinC),则角C等于(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案