精英家教网 > 高中数学 > 题目详情
(2011•江西模拟)某中学学业水平考试成绩分A、B、C、D四个等级,其中D为不合格,此校高三学生甲参加语文、数学、英语三科考试,合格率均为
4
5
,且获得A、B、C、D四个等级的概率均分别为x、
2
5
3
10
、y

(1)求x、y的值;
(2)假设有一科不合格,则不能拿到高中毕业证,求学生甲不能拿到高中毕业证的概率.
分析:(1)根据物理、化学、历史三科,三科合格的概率、概率的基本性质列出关于x,y的方程组,解之即得x,y的值
(2)学生甲不能拿到高中毕业证,即至少有一科为不合格,其对立事件为“没有一科不合格”;先求出“没有一科不合格”的概率,进而可得答案.
解答:解:(1)根据题意,
可得
x+
2
5
+
3
10
=
4
5
x+
2
5
+
3
10
+y=1
,解可得x=
1
10
,y=
1
5

(2)根据题意,学生甲不能拿到高中毕业证,即至少有一科为不合格,其对立事件为没有一科不合格;
已知该学生三科的合格率均为
4
5
,则不合格的概率均为
1
5

学生甲不能拿到高中毕业证的概率P=1-(
4
5
3=1-
64
125
=
61
125
点评:本题考查相互独立事件的概率计算以及概率的基本性质,(2)中要利用对立事件的概率性质来求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=
3
bc
sinC=2
3
sinB
,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
满足f(-
π
3
)=f(0)

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案