精英家教网 > 高中数学 > 题目详情
2.如图阴影部分是由曲线y=2x2和x2+y2=3及x轴围成的部分封闭图形,则阴影部分的面积为(  )
A.$\frac{π}{2}-\frac{{\sqrt{3}}}{8}$B.$\frac{π}{2}-\frac{{3\sqrt{3}}}{8}$C.$\frac{3π}{2}-\frac{{\sqrt{3}}}{8}$D.$\frac{3π}{2}-\frac{{3\sqrt{3}}}{8}$

分析 首先求出曲线的交点,然后求直线y=$\sqrt{3}$x与y=2x2围成的面积S1,利用扇形的面积公式,求得扇形AOB的面积S2,阴影部分的面积S=S2-S1=$\frac{π}{2}$-$\frac{\sqrt{3}}{8}$.

解答 解:曲线y=2x2和圆x2+y2=3的在第一象限的交点为A($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
则直线OA的方程方程为:y=$\sqrt{3}$x,
∴直线OA与抛物线y=2x2所围成的面积S1=${∫}_{0}^{\frac{\sqrt{3}}{2}}$($\sqrt{3}$x-2x2)dx=($\frac{\sqrt{3}}{2}$x2-$\frac{2}{3}$x3)${丨}_{0}^{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{2}$×$\frac{3}{4}$-$\frac{2}{3}$×$\frac{3\sqrt{3}}{8}$=$\frac{\sqrt{3}}{8}$,
则扇形AOB圆心角为α=$\frac{π}{3}$,则扇形AOB的面积S2=$\frac{1}{2}$αr2=$\frac{1}{2}$×$\frac{π}{3}$×3=$\frac{π}{2}$,
∴阴影部分的面积S=S2-S1=$\frac{π}{2}$-$\frac{\sqrt{3}}{8}$,
故选A.

点评 本题考查了利用定积分求阴影部分的面积,关键是利用定积分表示面积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知复数z=m(m-1)+(m2+2m-3)i;当实数m取什么值时,复数z是:
(1)实数
(2)虚数
(3)纯虚数
(4)零.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\underset{lim}{△x→0}$$\frac{f{(x}_{0}+△x)-f{(x}_{0}-△x)}{△x}$=(  )
A.$\frac{1}{2}$f′(x0B.f′(x0C.2f′(x0D.-f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学在一次研究性学习中发现,以下5个不等关系式子
 ①$\sqrt{3}$-1>$2-\sqrt{2}$
②$2-\sqrt{2}$>$\sqrt{5}-\sqrt{3}$
③$\sqrt{5}-\sqrt{3}$>$\sqrt{6}-2$
④$\sqrt{6}-2$>$\sqrt{7}-\sqrt{5}$
⑤$\sqrt{7}-\sqrt{5}$>$2\sqrt{2}-\sqrt{6}$
(1)上述五个式子有相同的不等关系,分析其结构特点,请你再写出一个类似的不等式
(2)请写出一个更一般的不等式,使以上不等式为它的特殊情况,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a、b的值;
(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设曲线y=ax-ln(2x+1)在点(0,0)处的切线方程为y=2x,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的公比q>1,a2,a3是方程x2-6x+8=0的两根.
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义运算a⊕b=a2+2ab-b2,则cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=$\frac{1+\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案