精英家教网 > 高中数学 > 题目详情
如图已知:菱形所在平面与直角梯形所在平面互相垂直,分别是线段的中点.

(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。
(1)证明详见解析;(2).

试题分析:(1)先证,由面面垂直的性质定理得到平面,所以,由勾股定理证,所以由线面垂直的判定定理得平面,所以面面垂直的判定定理得平面平面;(2)首先建立空间直角坐标系,再写出各点坐标,由共面向量定理,得,所以求出,得出点的坐标是:,由(1)得平面的法向量是,根据条件得平面的法向量是,所以.
试题解析:(1)证明:在菱形中,因为,所以是等边三角形,
是线段的中点,所以
因为平面平面,所以平面,所以;  2分
在直角梯形中,,得到:
从而,所以,        4分
所以平面,又平面,所以平面平面;   6分
(2)由(1)平面,如图,分别以所在直线为轴,轴,轴建立空间直角坐标系,


   7分
设点的坐标是,则共面,
所以存在实数使得:

得到:.即点的坐标是:,    8分
由(1)知道:平面的法向量是
设平面的法向量是
则:,         9分
,则,即
所以,                  11分
即平面与平面所成角的余弦值是.             12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,D、E分别为、AD的中点,F为上的点,且

(I)证明:EF∥平面ABC;
(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,给出下列4个命题:
①若          ②若
③若         ④若
其中真命题的序号为(     )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

单位正方体在一个平面内的投影面积的最大值和最小值分别为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,侧棱长为的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40
过A作截面AEF,则截面△AEF周长的最小值为           

查看答案和解析>>

同步练习册答案