精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的单调区间;

(2)设是曲线图象上的两个相异的点,若直线的斜率恒成立,求实数的取值范围;

(3)设函数有两个极值点,若恒成立,求实数的取值范围.

【答案】(1)单增区间为;单调减区间为;(2);(3).

【解析】试题分析:

(1)利用题意求解 的解析式,然后求解分式不等式即可得到函数的单调区间;

(2)对导函数分离系数,结合均值不等式的结论讨论实数 的取值范围即可;

(3)利用题意分析所给的问题,构造函数,设

讨论函数 的性质即可得到实数 的取值范围.

试题解析:

(1)

的单调增区间为;单调减区间为.

,所以

上单调递增,

,对恒成立,

,对恒成立,

,当时取等号,

,故.

(3),因为函数有两个极值点,所以是方程的两个根,即,所以是方程的两个根,

所以有

,则,设

上单减,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示:

(1)求ω,φ的值;
(2)设g(x)=2 f( )f( )﹣1,当x∈[0, ]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=cos2x的图象,只需将y=cos(2x+ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 矩形所在的平面, 分别是的中点.

(1)求证: 平面

(2)求证: .

(3)当满足什么条件时,能使平面成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂最近十年生产总量逐年上升,如表是部分统计数据:

年份

2008

2010

2012

2014

2016

生产总量(万吨)

(Ⅰ)利用所给数据求年生产总量与年份之间的回归直线方程

(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该厂2018年生产总量.

(回归直线的方程: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2,1), =(1,7), =(5,1),设X是直线OP上的一点(O为坐标原点),那么 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.

(1)证明:AC⊥D1E;
(2)求DE与平面AD1E所成角的正弦值.

查看答案和解析>>

同步练习册答案