精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足$\frac{1}{3}$an≤an+1≤3an,n∈N+,a1=1,若a2=2,a3=x,a4=9,求x的取值范围.

分析 由题意可得:$\frac{1}{3}$a2≤a3≤3a2,$\frac{1}{3}$a3≤a4≤3a3,代入解出即可.

解答 解:依题意:$\frac{1}{3}$a2≤a3≤3a2
∴$\frac{2}{3}$≤x≤6;
又$\frac{1}{3}{a}_{3}≤{a}_{4}≤3{a}_{3}$,
∴$\frac{x}{3}≤9≤3x$,即3≤x≤27.
综上可得:3≤x≤6.

点评 本题是数列与不等式的综合题,考查数列的函数特性,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2x.
(1)若f(x)在[a,a+3]上的最大值和最小值分别记为M(a),m(a),求h(a)=M(a)-m(a).
(2)关于a的方程h(a)=ba+5的两个实根分别为x1∈(-3,-2),x2∈(0,1),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.根据下列条件,分别求出对应的二次函数的关系式.
(1)已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(3,-1);
(2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2;
(3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.x2+x+m=(x-n)2,则m=$\frac{1}{4}$,n=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与定积分${∫}_{0}^{3π}$$\sqrt{1-cosx}$dx相等的是(  )
A.$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dxB.$\sqrt{2}$${∫}_{0}^{3π}$|sin$\frac{x}{2}$|dxC.|$\sqrt{2}$${∫}_{0}^{3π}$sin$\frac{x}{2}$dx|D.以上结论都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,|AB|=4,且|AC|,|AB|,|BC|成等差数列.
(I)求顶点C的轨迹方程;
(Ⅱ)求△ABC重心G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设空间四边形ABCD,E,F,G,H分别是AC,BC,DB,DA的中点,若AB=12$\sqrt{2}$,CD=4$\sqrt{2}$,且四边形EFGH的面积为12$\sqrt{3}$,求AB和CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则$\frac{b}{a}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{4-x}$-$\sqrt{x-4}$的定义域是(  )
A.[-4,4]B.[4,+∞)C.(-∞,-4]D.{4}

查看答案和解析>>

同步练习册答案