精英家教网 > 高中数学 > 题目详情
如果圆x2+y2+dx+ey+f=0(d2+e2-4f>0)关于直线y=2x对称,那么
 
考点:圆的一般方程
专题:直线与圆
分析:根据圆的一般方程以及远的对称性即可得到结论.
解答: 解:由圆的一般方程可得圆心坐标为(-
d
2
-
e
2
),
∵圆关于y=2x对称,
∴圆心在直线y=2x上,
-
e
2
=2×(-
d
2
),
即e=2d,
故答案为:e=2d
点评:本题主要考查圆的一般方程以及圆的对称性,根据对称性得到圆心在直线上是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=
1
2
an2-an+2.求证:1≤an<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C1(x-2)2+(y+3)2=25,过点A(-1,0)的弦中,弦长的最大值为M,最小值为m,则M-m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
mx2
lnx
g(x)=m-
mx2
emx
,其中m∈R且m≠0.e=2.71828…为自然对数的底数.
(Ⅰ)当m<0时,求函数f(x)的单调区间和极小值;
(Ⅱ)当m>0时,若函数g(x)存在a,b,c三个零点,且a<b<c,试证明:-1<a<0<b<e<c;
(Ⅲ)是否存在负数m,对?x1∈(1,+∞),?x2∈(-∞,0),都有f(x1)>g(x2)成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内动点z=x+yi(x,y∈R),且满足|z+
3
|+|z-
3
|=4,设动点z所应对的(x,y)的轨迹是曲线C.
(1)求曲线C的方程;
(2)若直线y=kx+2与曲线C交于不同的两点A,B,O是坐标原点,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>1,不等式loga(3-a)>0,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an+1=
2
an,n为奇数
2
an+1,n为偶数
,且a1=1,则a19=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足al=2,an+l=2an2,n∈N*
(Ⅰ)证明:数列{1+log2an}为等比数列;
(Ⅱ)证明:
1
1+log2a1
+
2
1+log2a2
+…+
n
1+log2an
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某几何体的三视图在网格纸上,且网格纸上小正方形的边长为1,则该几何体的体积为(  )
A、6π+4
B、12π+4
C、6π+12
D、12π+12

查看答案和解析>>

同步练习册答案