精英家教网 > 高中数学 > 题目详情

关于x的方程(数学公式x=3a+2有负数根,则实数a的取值范围________.

(-,+∞)
分析:由题意可得函数f(x)=(x的图象和直线y=3a+2在(-∞,0)上有交点,故有 3a+2>1,由此解得a的范围.
解答:解:由题意可得函数f(x)=(x的图象和直线y=3a+2在(-∞,0)上有交点,
故有 3a+2>1,解得 a>-
故实数a的取值范围为(-,+∞),
故答案为 (-,+∞).
点评:本题主要考查函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x+5,x∈R,
(1)求:函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;
(3)当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求:实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+3
(1)当x∈[-1,3]时,求函数f(x)的值域;
(2)若关于x的方程|f(x)|-a=0有三个不相等的实数根,求实数a的值;
(3)已知t>0,求函数f(x)在区间[t,t+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R).
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当t=-1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2+2t+1在区间(-1,2]上有零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州模拟)设函数f(x)=loga
1+x
1-x
(a>0且a≠1)

(I)求f(m)+f(n)-f(
m+n
1+mn
)
的值;
(II)若关于x的方程loga
t
(1-x)(2x2-5x+5)
=f(x)
在x∈[0,1)上有实数解,求实数t的取值范围.
(III)设函数g(x)是函数f(x)的反函数,求证:当a>1时,
n
k=1
g(a-k)<
lna
2(a-1)
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-1,g(x)=a|x-1|.
(1)若关于x的方程|f(x)|=g(x)只有一个实数解x=1,求实数a的取值范围;
(2)若当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)若实数a∈[0,+∞),求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.

查看答案和解析>>

同步练习册答案