精英家教网 > 高中数学 > 题目详情
15.已知点(-$\frac{π}{8}$,0)为函数f(x)=3sin(2x+φ)的一个对称中心,且-$\frac{π}{2}$<φ<$\frac{π}{2}$.
(Ⅰ)求φ的值及函数f(x)的单调减区间;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值及f(x)取最大值时x的值.

分析 (1)首先,根据对称中心,代入即可得到相应的φ=$\frac{π}{4}$,然后,根据正弦函数的单调性确定其单调减区间;
(2)直接根据(1)的结果,利用正弦函数的图象确定其最大值即可.

解答 解:(1)∵点(-$\frac{π}{8}$,0)为函数f(x)=3sin(2x+φ)的一个对称中心,
∴将点(-$\frac{π}{8}$,0)代入f(x)=3sin(2x+φ)得,
3sin(-$\frac{π}{4}$+φ)=0,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$.
∴φ=$\frac{π}{4}$,
∴f(x)=3sin(2x+$\frac{π}{4}$),
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{4}$+2kπ≤2x≤$\frac{5π}{4}$+2kπ,
∴$\frac{π}{8}$+kπ≤x≤$\frac{5π}{8}$+kπ,
∴函数f(x)的单调减区间[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],
(2)∵0≤x≤$\frac{π}{2}$,
∴0≤2x≤π,
∴$\frac{π}{4}$≤2x+$\frac{π}{4}$≤$\frac{5π}{4}$,
∴当2x+$\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{8}$时,该函数取得最大值为:3.

点评 本题重点考查了三角函数的图象与性质、三角函数单调性与最值问题的处理思路和方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择的了模型y=ax2+bx+c,乙选择了模型y=p•qx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2$\sqrt{3}$sinx-2cosx
(1)若x∈[0,π],求f(x)的最大值和最小值.
(2)若f(x)=0,求$\frac{cosx-sinx}{\sqrt{2}sin(x+\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)满足f(x+1)=f(x-1),当x∈[-1,1]时,f(x)=x2,则函数g(x)=f(x)-log6(x+1)的零点的个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$f(x)=\left\{\begin{array}{l}1,x∈[0,1]\\ x-3,x∉[0,1]\end{array}\right.$,若f[f(x)]=1成立,则x的取值集合为{x|0≤x≤1或3≤x≤4或x=7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,则实数m的取值范围为(  )
A.m≤3B.2≤m≤3C.m≥2D.m≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=(m2-m-1)x-5m-1是幂函数且是(0,+∞)上的增函数,则m的值为(  )
A.2B.-1C.-1或2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\overrightarrow a$,$\overrightarrow b$的夹角为120°,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=3$则$|{5\overrightarrow a-\overrightarrow b}|$=7;$2\overrightarrow a+\overrightarrow b$在$\overrightarrow b$方向上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对某平面图形使用斜二测画法后得到的直观图是边长为1的正方形(如图),则原图形的面积是(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案