精英家教网 > 高中数学 > 题目详情
12.设x∈(0,π),若$\frac{1}{sinx}+\frac{1}{cosx}=2\sqrt{2}$,则$sin(2x+\frac{π}{3})$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 根据题意,求出x的值,再代人$sin(2x+\frac{π}{3})$中,即可求出结果.

解答 解:∵x∈(0,π),且$\frac{1}{sinx}+\frac{1}{cosx}=2\sqrt{2}$,
∴$\frac{sinx+cosx}{sinxcosx}$=2$\sqrt{2}$,
即sinx+cosx=2$\sqrt{2}$sinxcosx,
两边平方得1+2sinxcosx=8sin2xcos2x,
即1+sin2x=2sin22x,
解得sin2x=1或sin2x=-$\frac{1}{2}$(不合题意,舍去);
当sin2x=1时,2x=$\frac{π}{2}$,解得x=$\frac{π}{4}$,
∴$sin(2x+\frac{π}{3})$=sin($\frac{π}{2}$+$\frac{π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$.
故选:A.

点评 本题考查了三角函数的化简与求值运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+φ)0<φ<$\frac{π}{2}$)的图象的一个对称中心为($\frac{3π}{8}$,0),则函数f(x)的单调递减区间是(  )
A.[2kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$](k∈Z)B.[2kπ+$\frac{π}{8}$,2kπ+$\frac{5π}{8}$](k∈Z)
C.[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z)D.[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z满足3-i(z+1)=i,则z=(  )
A.-2+3iB.-2-3iC.2+3iD.2-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知指数函数f(x)=ax-16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.
(3)设$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“$a=\frac{1}{2}$”是函数“y=cos22ax-sin22ax的最小正周期为π”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.要做一个圆锥形的漏斗,其母线长为40cm,要使其体积为最大,则高为$\frac{20\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别是内角A,B,C的对边,若bsinA=3csinB,a=3,$cosB=\frac{2}{3}$,则b=(  )
A.14B.6C.$\sqrt{14}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a、b、c分别是角A、B、C所对的边,1+$\frac{tanC}{tanB}$=$\frac{2a}{b}$,
(1)求角C的大小;(2)若cos(B+$\frac{π}{6}$)=$\frac{1}{3}$,求sinA的值.

查看答案和解析>>

同步练习册答案