精英家教网 > 高中数学 > 题目详情
13.锐角△ABC三边长分别为x,x+1,x+2,则x的取值范围是(  )
A.(-1,3)B.(1,3)C.(3,+∞)D.(1,3)∪(3,+∞)

分析 设最大角为C,由已知及余弦定理可得cosC=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$>0,解不等式组即可得解x的取值范围.

解答 解:设锐角△ABC最大角为C,
∴cosC>0,
∵根据余弦定理,可得:cosC=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$=$\frac{{x}^{2}-2x-3}{3{x}^{2}+2x}$>0,
∴$\left\{\begin{array}{l}{{x}^{2}-2x-3>0}\\{3{x}^{2}+2x>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-2x-3<0}\\{3{x}^{2}+2x<0}\end{array}\right.$,
∵x>0,
∴解得:x>3,即x的取值范围是(3,+∞).
故选:C.

点评 本题主要考查了余弦定理及不等式组的解法及应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5,则数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8项和为(  )
A.-$\frac{3}{4}$B.-$\frac{8}{15}$C.$\frac{3}{4}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}满足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令cn=(3n-1)•an,求数列{cn}的前n项和Tn
(Ⅲ)设数列{bn}满足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=(  )
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中角A、B、C所对的边分别为a、b、c,若a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,则△ABC的面积为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py的焦点F到准线l的距离为2,点P、Q都是抛物线上的点,且点Q与点P关于y轴对称.
(Ⅰ)求抛物线的标准方程和焦点坐标;
(Ⅱ)圆E:x2+(y-4)2=1,过点P作圆C的两条切线,分别与抛物线交于M,N两点(M、N不与点P重合),若直线MN与抛物线在点Q处的切线平行,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,α=2$\sqrt{3}$,A=60°.
(1)若b=2,求cosB的值;
(2)若S△ABC=2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(3an-1),数列{bn}为等差数列,且b1=a1,b5=a3
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{4({n}^{2}+n+1)}{{b}_{n+1}^{2}-1}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案