精英家教网 > 高中数学 > 题目详情
8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.求椭圆C的方程.

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),运用椭圆的离心率公式和椭圆的定义,求得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程.

解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
由椭圆的定义可得2a=4,即a=2,
c=$\sqrt{3}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
则椭圆的方程为$\frac{{x}^{2}}{4}$+y2=1.

点评 本题考查椭圆方程的求法,注意运用椭圆的定义和离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.f(x)=$\frac{sinx}{x}$,则f′(π)的值为(  )
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=3x2-2x,数列{an}的前n项和为Sn,点(n,Sn)都在函数图象上,令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn为数列{bn}的前n项和,使得Tn<$\frac{m}{20}$对任意的n∈N*恒成立的最小正整数m为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,若z1=2+i,z2=1+i,则z=z1•$\overline{z_2}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知随机变量X服从两点分布,且P(X=1)=0.6,设ξ=3X-2,那么P(ξ=-2)=0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.锐角△ABC三边长分别为x,x+1,x+2,则x的取值范围是(  )
A.(-1,3)B.(1,3)C.(3,+∞)D.(1,3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果满足∠ABC=60°,AC=12,BC=k的△ABC有两个,那么k的取值范围是$12<k<8\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两人进行定点投篮游戏,投篮者若投中.则继续投篮,否则由对方投篮,第-次由甲投篮;已知每次投篮甲、乙命中的概率分别为$\frac{1}{3}$,$\frac{3}{4}$.
(1)求第三次由乙投篮的概率;
(2)在前3次投篮中,乙投篮的次数为ξ.求ξ的分布列、期望及标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求和:Sn=$\frac{1}{1×5}$+$\frac{1}{3×7}$+$\frac{1}{5×9}$+…+$\frac{1}{(2n-1)(2n+3)}$.

查看答案和解析>>

同步练习册答案