精英家教网 > 高中数学 > 题目详情
18.f(x)=$\frac{sinx}{x}$,则f′(π)的值为(  )
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

分析 根据导数的运算法则求导,再代值计算即可.

解答 解:f′(x)=$\frac{xcosx-sinx}{{x}^{2}}$,
∴f′(π)=$\frac{xcosx-sinx}{{x}^{2}}$=$\frac{πcosπ-sinπ}{{π}^{2}}$=-$\frac{1}{π}$,
故选:A.

点评 本题考查了导数的运算法则和导数值的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x(x-c)2在x=2处有极大值,则实数c的值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=4x上一点M(x0,2$\sqrt{3}$),则点M到抛物线焦点的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在A,B,C,D,E五位候选人中,选出正副班长各一人的选法共有m种,选出三人班级委的选法共有n种,则(m,n)是 (  )
A.(20,60)B.(10,10)C.(20,10)D.(10,60)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知p:|x-2|>3,q:x>5,则¬p是¬q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5,则数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8项和为(  )
A.-$\frac{3}{4}$B.-$\frac{8}{15}$C.$\frac{3}{4}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,并且满足2Sn=an2+n,an>0(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)猜想{an}的通项公式,并加以证明;
(Ⅲ)设bn=$\frac{1}{{{a_n}^3}}$,求证:b1+b2+…+bn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列an=$\left\{{\begin{array}{l}{\frac{9}{2},n=1}\\{{3^n},n≥2}\end{array}}$,记数列{an}的前n项和为Tn,若对任意的n∈N*都有Tn•k≥3n-6恒成立,则实数k的取值范围k≥$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.求椭圆C的方程.

查看答案和解析>>

同步练习册答案