分析 根据题意,分析所给数列的通项可得an=$\frac{1}{(2n-1)(2n+3)}$=$\frac{1}{4}$($\frac{1}{2n-1}$-$\frac{1}{2n+3}$),将其代入Sn中可得Sn的值.
解答 解:Sn=$\frac{1}{1×5}$+$\frac{1}{3×7}$+$\frac{1}{5×9}$+…+$\frac{1}{(2n-1)(2n+3)}$,
=$\frac{1}{4}$[(1-$\frac{1}{5}$)+($\frac{1}{3}$-$\frac{1}{7}$)+($\frac{1}{5}$-$\frac{1}{9}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+3}$)],
=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{3}$-$\frac{1}{7}$+$\frac{1}{5}$-$\frac{1}{9}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+3}$],
=$\frac{n(4n+5)}{3(2n+1)(2n+3)}$.
∴Sn=$\frac{n(4n+5)}{3(2n+1)(2n+3)}$.
点评 本题考查裂项法求数列的前n项和,解题的关键是分析所给数列的通项特点,寻求解题的突破,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| X | 0 | 1 |
| P | $\frac{a}{2}$ | $\frac{a^2}{2}$ |
| A. | 2 | B. | 2或0.5 | C. | 0.5 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 360种 | B. | 240种 | C. | 180种 | D. | 120种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | -2014 | C. | 2016 | D. | -2015 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com