精英家教网 > 高中数学 > 题目详情
16.已知i是虚数单位,若z1=2+i,z2=1+i,则z=z1•$\overline{z_2}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由z2求出$\overline{{z}_{2}}$,然后把z1,$\overline{{z}_{2}}$,代入z=z1•$\overline{z_2}$,利用复数代数形式的乘法运算化简,求出z在复平面内的对应点的坐标,则答案可求.

解答 解:由z1=2+i,z2=1+i,得$\overline{{z}_{2}}=1-i$,
则z=z1•$\overline{z_2}$=(2+i)(1-i)=3-i.
z在复平面内的对应点的坐标为:(3,-1),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在A,B,C,D,E五位候选人中,选出正副班长各一人的选法共有m种,选出三人班级委的选法共有n种,则(m,n)是 (  )
A.(20,60)B.(10,10)C.(20,10)D.(10,60)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列an=$\left\{{\begin{array}{l}{\frac{9}{2},n=1}\\{{3^n},n≥2}\end{array}}$,记数列{an}的前n项和为Tn,若对任意的n∈N*都有Tn•k≥3n-6恒成立,则实数k的取值范围k≥$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}满足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令cn=(3n-1)•an,求数列{cn}的前n项和Tn
(Ⅲ)设数列{bn}满足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x、y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则$\frac{y}{x}$的最小值为$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=(  )
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py的焦点F到准线l的距离为2,点P、Q都是抛物线上的点,且点Q与点P关于y轴对称.
(Ⅰ)求抛物线的标准方程和焦点坐标;
(Ⅱ)圆E:x2+(y-4)2=1,过点P作圆C的两条切线,分别与抛物线交于M,N两点(M、N不与点P重合),若直线MN与抛物线在点Q处的切线平行,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分,小王选对每题的概率为0.8,则其第一大题得分的均值为48.

查看答案和解析>>

同步练习册答案