·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃÊýÁÐ{$log_2^{\;}{a_n}$}ÊÇÊ×ÏàΪ$log_2^{\;}{a_1}=log_2^{\;}2=1$£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¬
£¨¢ò£©ÀûÓôíλÏà¼õ·¨¼´¿ÉÇó³öÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨¢ó£©Çó³öÊýÁÐ{bn}µÄͨÏÀûÓõÃb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ¬ÕýÕûÊým¡¢n£¨1£¼m£¼n£©£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©¡ß¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬$log_2^{\;}{a_n}=1+log_2^{\;}{a_{n-1}}$£¬
¼´£º$log_2^{\;}{a_n}-log_2^{\;}{a_{n-1}}=1$
¡àÊýÁÐ{$log_2^{\;}{a_n}$}ÊÇÊ×ÏàΪ$log_2^{\;}{a_1}=log_2^{\;}2=1$£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¡à$log_2^{\;}{a_n}=1+1¡Á£¨n-1£©=n$£¬
¡àan=2n£¬£¨n¡ÊN*£©
£¨¢ò£©Áîcn=£¨3n-1£©•an=£¨3n-1£©¡Á2n£¬
¡à${T_n}=2¡Á{2^1}+5¡Á{2^2}+8¡Á{2^3}+¡+£¨{3n-4}£©¡Á{2^{n-1}}+£¨{3n-1}£©¡Á{2^n}$£¬
¡à$2{T_n}=2¡Á{2^2}+5¡Á{2^3}+8¡Á{2^4}+¡+£¨{3n-4}£©¡Á{2^n}+£¨{3n-1}£©¡Á{2^{n+1}}$£¬
¡à$-{T_n}=2¡Á{2^1}+3¡Á{2^2}+3¡Á{2^3}+¡+3¡Á{2^{n-1}}+3¡Á{2^n}-£¨{3n-1}£©¡Á{2^{n+1}}$£¬
¡à$-{T_n}=6¡Á\frac{{{2^n}-1}}{2-1}-2-£¨{3n-1}£©¡Á{2^{n+1}}=-£¨6n-8£©•{2^n}-8$
¡à${T_n}=£¨6n-8£©•{2^n}+8$
£¨¢ó£©bn=$\frac{{na_n^{\;}}}{{£¨2n+1£©•{2^n}}}$=$\frac{n}{2n+1}$£¬Èôb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ¬
Ôò£¨$\frac{m}{2m+1}$£©2=$\frac{1}{3}$£¨$\frac{n}{2n+1}$£©£¬¼´$\frac{{m}^{2}}{4{m}^{2}+4m+1}$=$\frac{n}{6n+3}$£®
¿ÉµÃ$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$£¬
ËùÒÔ-2m2+4m+1£¾0£¬½âµÃ£º1-$\frac{\sqrt{6}}{2}$£¼m£¼1+$\frac{\sqrt{6}}{2}$£®
ÓÖm¡Ên¡ÊN*£¬ÇÒm£¾1£¬
¡àm=2£¬´Ëʱn=12£¬£®
¹Êµ±ÇÒ½öµ±m=2£¬Äê2£®Ê¹µÃb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁеÄͨÏîÒÔ¼°´íλÏà¼õ·¨ÇóºÍ£¬ÕýÈ·ÔËÓÃÊýÁеÝÍÆÊ½Êǹؼü£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | $\frac{3}{2}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\vec a$-$\vec b$ | B£® | $\vec b$-$\vec a$ | C£® | $\frac{1}{2}$£¨$\vec a$-$\vec b$£© | D£® | $\frac{1}{2}$£¨$\vec b$-$\vec a$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$ | B£® | $\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$ | C£® | $\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$ | D£® | $\overrightarrow{CB}$=-$\overrightarrow b$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|0¡Üx£¼3} | B£® | {x|-3£¼x£¼3} | C£® | {0£¬1£¬2} | D£® | {0£¬1£¬3} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬3£© | B£® | £¨1£¬3£© | C£® | £¨3£¬+¡Þ£© | D£® | £¨1£¬3£©¡È£¨3£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com