4£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãlog2an=1+log2an-1n¡ÊN*£¬n¡Ý2£¬ÇÒa1=2£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Áîcn=£¨3n-1£©•an£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨¢ó£©ÉèÊýÁÐ{bn}Âú×ãbn=$\frac{{na_n^{\;}}}{{£¨2n+1£©•{2^n}}}$£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓеÄm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃÊýÁÐ{$log_2^{\;}{a_n}$}ÊÇÊ×ÏàΪ$log_2^{\;}{a_1}=log_2^{\;}2=1$£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¬
£¨¢ò£©ÀûÓôíλÏà¼õ·¨¼´¿ÉÇó³öÊýÁÐ{cn}µÄǰnÏîºÍTn£»
£¨¢ó£©Çó³öÊýÁÐ{bn}µÄͨÏÀûÓõÃb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ¬ÕýÕûÊým¡¢n£¨1£¼m£¼n£©£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©¡ß¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬$log_2^{\;}{a_n}=1+log_2^{\;}{a_{n-1}}$£¬
¼´£º$log_2^{\;}{a_n}-log_2^{\;}{a_{n-1}}=1$
¡àÊýÁÐ{$log_2^{\;}{a_n}$}ÊÇÊ×ÏàΪ$log_2^{\;}{a_1}=log_2^{\;}2=1$£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
¡à$log_2^{\;}{a_n}=1+1¡Á£¨n-1£©=n$£¬
¡àan=2n£¬£¨n¡ÊN*£©
£¨¢ò£©Áîcn=£¨3n-1£©•an=£¨3n-1£©¡Á2n£¬
¡à${T_n}=2¡Á{2^1}+5¡Á{2^2}+8¡Á{2^3}+¡­+£¨{3n-4}£©¡Á{2^{n-1}}+£¨{3n-1}£©¡Á{2^n}$£¬
¡à$2{T_n}=2¡Á{2^2}+5¡Á{2^3}+8¡Á{2^4}+¡­+£¨{3n-4}£©¡Á{2^n}+£¨{3n-1}£©¡Á{2^{n+1}}$£¬
¡à$-{T_n}=2¡Á{2^1}+3¡Á{2^2}+3¡Á{2^3}+¡­+3¡Á{2^{n-1}}+3¡Á{2^n}-£¨{3n-1}£©¡Á{2^{n+1}}$£¬
¡à$-{T_n}=6¡Á\frac{{{2^n}-1}}{2-1}-2-£¨{3n-1}£©¡Á{2^{n+1}}=-£¨6n-8£©•{2^n}-8$
¡à${T_n}=£¨6n-8£©•{2^n}+8$
£¨¢ó£©bn=$\frac{{na_n^{\;}}}{{£¨2n+1£©•{2^n}}}$=$\frac{n}{2n+1}$£¬Èôb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ¬
Ôò£¨$\frac{m}{2m+1}$£©2=$\frac{1}{3}$£¨$\frac{n}{2n+1}$£©£¬¼´$\frac{{m}^{2}}{4{m}^{2}+4m+1}$=$\frac{n}{6n+3}$£®
¿ÉµÃ$\frac{3}{n}$=$\frac{-2{m}^{2}+4m+1}{{m}^{2}}$£¬
ËùÒÔ-2m2+4m+1£¾0£¬½âµÃ£º1-$\frac{\sqrt{6}}{2}$£¼m£¼1+$\frac{\sqrt{6}}{2}$£®
ÓÖm¡Ên¡ÊN*£¬ÇÒm£¾1£¬
¡àm=2£¬´Ëʱn=12£¬£®
¹Êµ±ÇÒ½öµ±m=2£¬Äê2£®Ê¹µÃb1£¬bm£¬bn³ÉµÈ±ÈÊýÁУ®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁеÄͨÏîÒÔ¼°´íλÏà¼õ·¨ÇóºÍ£¬ÕýÈ·ÔËÓÃÊýÁеÝÍÆÊ½Êǹؼü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªµãP£¨x0£¬y0£©ÔÚÅ×ÎïÏßW£ºy2=4xÉÏ£¬ÇÒµãPµ½WµÄ×¼ÏߵľàÀëÓëµãPµ½xÖáµÄ¾àÀëÏàµÈ£¬Ôòx0µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®$\frac{3}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{CA}$=$\vec a$£¬$\overrightarrow{CB}$=$\vec b$£¬D¡¢E·Ö±ðÊÇCA¡¢CBµÄÖе㣬$\overrightarrow{DE}$=£¨¡¡¡¡£©
A£®$\vec a$-$\vec b$B£®$\vec b$-$\vec a$C£®$\frac{1}{2}$£¨$\vec a$-$\vec b$£©D£®$\frac{1}{2}$£¨$\vec b$-$\vec a$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬EΪABµÄÖе㣬$\overrightarrow{AB}$=$\overrightarrow a$£¬$\overrightarrow{AD}$=$\overrightarrow b$£¬ÔòÏÂÁÐÏòÁ¿±íʾ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$B£®$\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$C£®$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$D£®$\overrightarrow{CB}$=-$\overrightarrow b$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=3x2-2x£¬ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã£¨n£¬Sn£©¶¼ÔÚº¯ÊýͼÏóÉÏ£¬Áîbn=$\frac{1}{{{a_n}•{a_{n+1}}}}$£¬TnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬Ê¹µÃTn£¼$\frac{m}{20}$¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢µÄ×îСÕýÕûÊýmΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®É輯ºÏP={x|0¡Üx¡Ü3}£¬N={x¡ÊZ|-3£¼x£¼3}£¬ÔòP¡ÉN=£¨¡¡¡¡£©
A£®{x|0¡Üx£¼3}B£®{x|-3£¼x£¼3}C£®{0£¬1£¬2}D£®{0£¬1£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Èôz1=2+i£¬z2=1+i£¬Ôòz=z1•$\overline{z_2}$ÔÚ¸´Æ½ÃæÄڵĶÔÓ¦µãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èñ½Ç¡÷ABCÈý±ß³¤·Ö±ðΪx£¬x+1£¬x+2£¬ÔòxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬3£©B£®£¨1£¬3£©C£®£¨3£¬+¡Þ£©D£®£¨1£¬3£©¡È£¨3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªcos£¨¦Á+$\frac{¦Ð}{4}}$£©=$\frac{2}{3}$£¬Çósin£¨${\frac{¦Ð}{4}$-¦Á£©µÄÖµ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸