精英家教网 > 高中数学 > 题目详情
15.在△ABC中,$\overrightarrow{CA}$=$\vec a$,$\overrightarrow{CB}$=$\vec b$,D、E分别是CA、CB的中点,$\overrightarrow{DE}$=(  )
A.$\vec a$-$\vec b$B.$\vec b$-$\vec a$C.$\frac{1}{2}$($\vec a$-$\vec b$)D.$\frac{1}{2}$($\vec b$-$\vec a$)

分析 根据题意便可得到DE为△ABC的中位线,从而得出$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{AB}$,这样由向量减法的几何意义即可用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{DE}$.

解答 解:如图,

D、E分别是CA、CB的中点;
∴DE为△ABC的中位线;
∴DE∥AB,且$DE=\frac{1}{2}AB$;
∴$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{AB}=\frac{1}{2}(\overrightarrow{CB}-\overrightarrow{CA})$=$\frac{1}{2}(\overrightarrow{b}-\overrightarrow{a})$.
故选:D.

点评 考查三角形中位线的概念及性质,以及向量减法和数乘的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}的前n项和为Sn,a1=$\frac{1}{2}$公比q>0,S1+a1,S3+a3,S2+a2成等差数列.
(1)求an
(2)设bn=$\frac{1}{(lo{g}_{2}{a}_{n})^{2}}$,cn=(n+1)bnbn+2,求数列{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在A,B,C,D,E五位候选人中,选出正副班长各一人的选法共有m种,选出三人班级委的选法共有n种,则(m,n)是 (  )
A.(20,60)B.(10,10)C.(20,10)D.(10,60)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5,则数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8项和为(  )
A.-$\frac{3}{4}$B.-$\frac{8}{15}$C.$\frac{3}{4}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,并且满足2Sn=an2+n,an>0(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)猜想{an}的通项公式,并加以证明;
(Ⅲ)设bn=$\frac{1}{{{a_n}^3}}$,求证:b1+b2+…+bn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在(  )
A.大前提B.小前提C.结论D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列an=$\left\{{\begin{array}{l}{\frac{9}{2},n=1}\\{{3^n},n≥2}\end{array}}$,记数列{an}的前n项和为Tn,若对任意的n∈N*都有Tn•k≥3n-6恒成立,则实数k的取值范围k≥$\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}满足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令cn=(3n-1)•an,求数列{cn}的前n项和Tn
(Ⅲ)设数列{bn}满足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=2py的焦点F到准线l的距离为2,点P、Q都是抛物线上的点,且点Q与点P关于y轴对称.
(Ⅰ)求抛物线的标准方程和焦点坐标;
(Ⅱ)圆E:x2+(y-4)2=1,过点P作圆C的两条切线,分别与抛物线交于M,N两点(M、N不与点P重合),若直线MN与抛物线在点Q处的切线平行,求点P的坐标.

查看答案和解析>>

同步练习册答案