精英家教网 > 高中数学 > 题目详情
20.有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在(  )
A.大前提B.小前提C.结论D.以上都不是

分析 本题考查的知识点是演绎推理的基本方法及整数的分类,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“是我的录像机,我就一定能把它打开”,不难得到结论.

解答 解:∵大前提的形式:“是我的录像机,我就一定能把它打开”错误;
故此推理错误原因为:大前提错误,
故选:A

点评 演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3ax+{a}^{2}-3,(x<0)}\\{2{e}^{x}-(x-a)^{2}+3,(x>0)}\end{array}\right.$,a∈R.
(Ⅰ)若函数y=f(x)在x=1处取得极值,求a的值;
(Ⅱ)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围;
(Ⅲ)当x≥2时,记g(x)=f(x)+(x-a)2+(a-x)3-3+6ex,若g(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若ab<0且a+b=1,二项式(a+b)9按a的降幂排列,展开后其第二项不大于第三项,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,则($\frac{1+i}{{\sqrt{2}}}$)2015在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,$\overrightarrow{CA}$=$\vec a$,$\overrightarrow{CB}$=$\vec b$,D、E分别是CA、CB的中点,$\overrightarrow{DE}$=(  )
A.$\vec a$-$\vec b$B.$\vec b$-$\vec a$C.$\frac{1}{2}$($\vec a$-$\vec b$)D.$\frac{1}{2}$($\vec b$-$\vec a$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC中,a=4$\sqrt{3}$,b=4,A=60°,则B等于(  )
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,E为AB的中点,$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,则下列向量表示错误的是(  )
A.$\overrightarrow{AC}$=$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow{BD}$=$\overrightarrow a$-$\overrightarrow b$C.$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow a$D.$\overrightarrow{CB}$=-$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合P={x|0≤x≤3},N={x∈Z|-3<x<3},则P∩N=(  )
A.{x|0≤x<3}B.{x|-3<x<3}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.10名同学在高一和高二的数学成绩如表(百分制):
x74716876736770657472
y76757076796577627271
其中x为高一数学成绩,y为高二数学成绩.
(1)作出散点图并判断y与x是否是相关关系,如果是,求回归直线方程.
(2)若某同学高一的数学成绩是80分,那么他高二的数学成绩约为多少?
(附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)
$\sum_{i=1}^{10}{x}_{i}$=710,$\sum_{i=1}^{10}{y}_{i}$=723,$\overline{x}$=71,$\overline{y}$=72.3,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$=51476,$\sum_{i=1}^{10}{{x}_{1}}^{2}$=50520,$\sum_{i=1}^{10}{{y}_{1}}^{2}$=52541.

查看答案和解析>>

同步练习册答案