精英家教网 > 高中数学 > 题目详情
5.已知△ABC中,a=4$\sqrt{3}$,b=4,A=60°,则B等于(  )
A.30°B.30°或150°C.60°D.60°或120°

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{4\sqrt{3}}{sin6{0}^{°}}$=$\frac{4}{sinB}$,
化为:sinB=$\frac{1}{2}$.
∵b<a,∴B为锐角,
∴B=30°.
故选:A.

点评 本题考查了正弦定理、三角形边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=x2-4ex-ax在R上存在单调递增区间,则实数a的取值范围为(-∞,-2ln2-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a,b,c,d为实数,e是自然对数的底数,且eb=2a-1,d=2c+3,则(a-c)2+(b-d)2的最小值5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点P(t,4)在抛物线y2=4x上,抛物线的焦点为F,那么|PF|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在(  )
A.大前提B.小前提C.结论D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2)
(Ⅰ)令bn=an+1-an,求证:数列{bn}为等比数列;
(Ⅱ)求数列{an}及数列{n•(an-$\frac{1}{2}$)}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是递增的等比数列,且a2+a3=6,a1a4=8.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足$\frac{a_1}{b_1}$+$\frac{a_2}{b_2}$+…+$\frac{a_n}{b_n}$=2n•(n2+n+2)(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数.
(1)求X的分布列;
(2)求X的均值与方差;
(3)求“所选3人中女生人数X≤1”的概率.

查看答案和解析>>

同步练习册答案