精英家教网 > 高中数学 > 题目详情
9.设集合P={x|0≤x≤3},N={x∈Z|-3<x<3},则P∩N=(  )
A.{x|0≤x<3}B.{x|-3<x<3}C.{0,1,2}D.{0,1,3}

分析 例举出N中的元素,找出P与N的交集即可.

解答 解:∵P={x|0≤x≤3},N={x∈Z|-3<x<3}={-2,-1,0,1,2},
∴P∩N={0,1,2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.抛物线y2=8x的准线l的方程为x=-2,若直线l过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有个小偷在警察面前作了如下辩解:是我的录像机,我就一定能把它打开.看,我把它打开了.所以它是我的录像机.请问这一推理错在(  )
A.大前提B.小前提C.结论D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}满足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令cn=(3n-1)•an,求数列{cn}的前n项和Tn
(Ⅲ)设数列{bn}满足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是递增的等比数列,且a2+a3=6,a1a4=8.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足$\frac{a_1}{b_1}$+$\frac{a_2}{b_2}$+…+$\frac{a_n}{b_n}$=2n•(n2+n+2)(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=(  )
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中角A、B、C所对的边分别为a、b、c,若a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,则△ABC的面积为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正项数列{an}满足a1=2,a2=1,且$\frac{a_n}{{{a_{n+1}}}}$+$\frac{a_n}{{{a_{n-1}}}}$=2,则a12的值为(  )
A.$\frac{1}{6}$B.6C.$\frac{1}{3}$D.3

查看答案和解析>>

同步练习册答案