| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的四则运算进行化简,结合复数的几何意义进行判断即可.
解答 解:($\frac{1+i}{{\sqrt{2}}}$)2015=($\frac{1+i}{{\sqrt{2}}}$)2014•($\frac{1+i}{{\sqrt{2}}}$)=[($\frac{1+i}{{\sqrt{2}}}$)2]1007•($\frac{1+i}{{\sqrt{2}}}$)
=i1007•($\frac{1+i}{{\sqrt{2}}}$)=i4×251+3•($\frac{1+i}{{\sqrt{2}}}$)=-i•($\frac{1+i}{{\sqrt{2}}}$)=$\frac{1-i}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$i,
对应的坐标为($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)位于第四象限,
故选:D.
点评 本题主要考查复数的几何意义,利用复数的四则运算进行化简是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | -$\frac{8}{15}$ | C. | $\frac{3}{4}$ | D. | $\frac{8}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 大前提 | B. | 小前提 | C. | 结论 | D. | 以上都不是 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com