精英家教网 > 高中数学 > 题目详情

【题目】将函数的图象向右平移个单位长度,所得图象对应的函数

A. 在区间上单调递增 B. 在区间上单调递减

C. 在区间上单调递增 D. 在区间上单调递减

【答案】A

【解析】

将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为[+kπ,+],kZ,减区间为[+kπ,+],kZ,由此能求出结果.

将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,

增区间满足:﹣+2kπ2x,kZ,

减区间满足:+2kπ2x,kZ,

∴增区间为[+kπ,+],kZ,

减区间为[+kπ,+],kZ,

∴将函数y=sin(2x+)的图象向右平移个单位长度,

所得图象对应的函数在区间上单调递增.

故答案为:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设平面内到点和直线的距离相等的点的轨迹为曲线,则曲线的方程为_______;若直线与曲线相交于不同两点 与圆相切于点,且为线段的中点.在的变化过程中满足条件的直线条,则的所有可能值为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届江西省南昌市高三第一轮已知分别为三个内角的对边,且

Ⅰ)求

Ⅱ)若边上的中线, ,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如下表:

年份

2010

2011

2012

2013

2014

科研费用x(百万元)

1.6

1.7

1.8

1.9

2.0

公司所获利润y(百万元)

1

1.5

2

2.5

3

(1)求y关于x的回归直线方程;

(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润约为多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(﹣x)=f(x),f(x+8)=f(x),且当x∈(0,4]时f(x)= ,关于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016个整数解,则实数a的取值范围是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题:函数在区间上为减函数.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,在数列中,,点在直线上.

(1)求数列的通项公式;

(2)记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,其中0<α<x<π.

(1)若α=,求函数的最小值及相应x的值;

(2)若的夹角为,且,求tan 2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:

喜爱

不喜爱

总计

男学生

60

80

女学生

总计

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.

查看答案和解析>>

同步练习册答案