精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,∠B=30°,c=6,记b=f(a),若函数g(a)=f(a)﹣k(k是常数)只有一个零点,则实数k的取值范围是(  )

 

A.

{k|0<k≤3或k=6}

B.

{k|3≤k≤6}

C.

{k|k≥6}

D.

{k|k≥6或k=3}

考点:

函数零点的判定定理.

专题:

函数的性质及应用.

分析:

由余弦定理可得 b=f(a)的解析式,利用二次函数的性质可得f(a)的最小值为3,f(a)的增区间为[3,+∞),

减区间为(0,3),且f(0)趋于6,由此可得实数k的取值范围.

解答:

解:在△ABC中,∠B=30°,c=6,记b=f(a),

而由余弦定理可得 b==

=≥3,即f(a)的最小值为3.

由于函数g(a)=f(a)﹣k(k是常数)只有一个零点,故方函数y=f(a)与直线y=k有唯一交点,

由于函数f(a)的增区间为[3,+∞),减区间为(0,3),且f(0)趋于6,

结合函数b=f(a)的图象可得 k≥6,或k=3,

故选D.

点评:

本题主要考查函数的零点与方程的根的关系,二次函数的性质应用,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案