精英家教网 > 高中数学 > 题目详情
若定义在[-2014,2014]上的函数f(x)满足:对于任意的x1,x2∈[-2014,2014],有f(x1+x2)=f(x1)+f(x2)-2013,且x>0时,有f(x)>2013,f(x)的最大、小值分别为M、N,则M+N的值为(  )
A、4026B、4028
C、2013D、2014
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:利用赋值法,f(0)=2f(0)-2013可求f(0),结合已知设x1<x2,先证明函数的f(x)的单调性,进而可求函数的最大值与最小值.
解答: 解:∵对于任意x1,x2∈[-2014,2014]有f(x1+x2)=f(x1)+f(x2)-2013,
∴f(0)=2f(0)-2013,
∴f(0)=2013,
令x1=2014,x2=-2014,
∴f(0)=f(2014)+f(-2014)-2013,
∴f(2014)+f(-2014)=4026,
设x1<x2∈[-2014,2014],
则x2-x1>0,
∵x>0时,f(x)>2013,
∴f(x2-x1)>2013,
∴f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-2013>f(x1),
∴函数f(x)在[-2014,2014]上单调递增,
∴f(x)的最大值与最小值分别为M=f(2014)和N=f(-2014),
则M+N=f(2014)+f(-2014)=4026,
故选:A
点评:本题考查抽象函数及其应用,先利用单调性的定义证明函数f(x)在R上为单调递增函数是关键,也是难点,考查分析、推理与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,∠ABC=
π
2
,D是棱AC的中点,且AB=BC=BB1=2.
(Ⅰ)求证:AB1∥平面BC1D;
(Ⅱ)求异面直线AB1与BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆E外一点A作一条直线与圆E交与B,且AB=
1
3
AC,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C1
x=1+t
y=-2+2t
(t为参数),以坐标原点为极点,以x轴的非负半轴为极轴,两坐标系的长度单位相同,曲线C2:ρ=2cosθ,则曲线C1与曲线C2的交点之间的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第二象限角,P(x,4)为其终边上的一点,且cosα=
1
5
x,则tanα等于(  )
A、-
4
3
B、-
3
4
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相交,则双曲线的离心率的取值范围是(  )
A、(1,2)
B、(
2
3
3
,+∞)
C、(1,
2
3
3
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx,a∈R.
(I)若曲线y=f(x)与曲线g(x)=
x
在交点处有共同的切线,求a的值;
(Ⅱ)若对任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某餐馆一天中要购买A,B两种蔬菜,A、B蔬菜每斤的单价分别为2元和3 元.根据需要,A蔬菜至少要买6斤,B蔬菜至少要买4斤,而且一天中购买这两种蔬菜的总费用不能超过60元.
(1)写出一天中A蔬菜购买的斤数x和B蔬菜购买的斤数y之间的不等式组;
(2)在下面给定的坐标系中画出(1)中不等式组表示的平面区域(用阴影表
示),并求z=x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为y=±
3
x,且过点M(-1,3),则该双曲线的标准方程为
 

查看答案和解析>>

同步练习册答案